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“I still maintain that music is 
the best way of getting the 
self-expression job done.”

Nick Hornby

Overview
• Introduction

• Brief History of playlists

• Aspects of a good playlist

• Automatic generation of playlists

• Survey of automatic playlisters

• Evaluating playlists

• An evaluation of various playlisting services

• The future of playlisting
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Goals

• Understand where and why playlists are 
important

• Understand current and past methods of 
playlist construction

• Understand the whys and hows of various 
evaluation methods
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Introduction

What is a playlist? 
• mixtape

• prerecorded DJ set/mix CD

• live DJ set (typically mixed)

• radioshow logs

• an album

• functional music (eg. Muzak)

• any ordered list of songs?
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What is a playlist? 

we define a playlist as a set of songs meant 
to be listened to as a group, usually with an 

explicit order
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Why is playlisting 
important?

• Ultimately, music is consumed through 
listening

• An awareness of this act of listening is critical 
to successful MIR application

• The playlist is a formalization of this listening 
process

• Playlists have a traditional revenue model for 
artists and labels (e.g. radio)
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Brief History of 
Playlists

Mixed Concert Programs

• Marks the beginnings international 
combinations of music from multiple 
composers

• Begins circa 1850 in London 

• The idea of a set of music being curated 
begins to form 

From miscellany to homogeneity in concert programming 
William Weber 10

Early Broadcast Media

• moving the ethos of the earlier period onto the 
radio

• biggest changes are technology

• broadcast = larger simultaneous audience

• phonograph brings recorded music

• initial broadcasts (eg. 1906 - Fessenden) as 
publicity stunts

• first continuous broadcast 1920 - Frank Conrad

The slow pace of rapid technological change: Gradualism and punctuation in technological change
Daniel A. Levinthal 11

Rock On the Radio

• radio as a medium begins to push certain 
genres, especially rock and roll and r ‘n’ b

• playlist first used to describe (unordered) 
sets of songs

• personality driven

• John Peel

• Casey Kasem

Last Night A DJ Saved My Life; The history of the disc jockey
Bill Brewster and Frank Broughton

Finding an alternative: Music programming in US college radio 
Tim Wall 12



Disco & Hip-Hop
emergence of the club DJ

• DJ as Disco nightclubs, with a mixer and two turntables, 
saw the birth of the idea of continuous mixing

• DJs wanted dancers to not notice song transitions, and 
techniques such as beat matching and phrase 
alignment were pioneered

• Hip-Hop saw this idea pushed further, as DJs became live 
remixers, turning the turntable into an instrument

• At the same time, club DJs started to become the top 
billing over live acts, the curator becoming more of a draw 
than the artist

Last Night A DJ Saved My Life; The history of the disc jockey
Bill Brewster and Frank Broughton 13

The Playlist Goes Personal

• The emergence of portable audio devices drives the 
popularity of cassette tapes

• This in turn leads to reordering and combining of disparate 
material into mixtapes

• Mixtapes themselves are traded and distributed socially, 
providing a means for recommendation and discovery

• In hip-hop, mixtapes served as the first recordings of new 
DJs featuring novel mixes and leading to current 
phenomenon of Mix [CD|set|tape] (now on CD or other 
digital media)

Investigating the Culture of Mobile Listening: From Walkman to iPod 
Michael Bull 14

Now With Internet

• The Web’s increase in popularity and MP3 
audio compression allow for practical sharing 
of music of the Internet

• This brings the mixtape for physical sharing to 
non-place sharing.

• Streaming-over-internet radio emerges

• Playlists on the cloud: play.me, spotify, etc.

Remediating radio: Audio streaming, music recommendation and the discourse of radioness
Ariana Moscote Freire 15

Aspects of a good 
playlist

Aspects of a good Playlist

To me, making a tape is like writing a letter — there's a lot 
of erasing and rethinking and starting again. A good 
compilation tape, like breaking up, is hard to do. You've got 
to kick off with a corker, to hold the attention (...), and then 
you've got to up it a notch, or cool it a notch, and you can't 
have white music and black music together, unless the 
white music sounds like black music, and you can't have 
two tracks by the same artist side by side, unless you've 
done the whole thing in pairs and...oh, there are loads of 
rules.     - Nick Hornby, High Fidelity
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Factors affecting a good playlist

• The songs in the playlist - including the listener’s 
familiarity with and preference for the songs

• The level of variety and coherence in a playlist

• The order of the songs:

• The song transitions

• Overall playlist structure.

• Other factors: serendipity, freshness, 
‘coolness’, 

• The Context

Learning Preferences for Music Playlists
A.M. de Mooij and W.F.J. Verhaegh 18



Factors affecting a good playlist

Learning Preferences for Music Playlists
A.M. de Mooij and W.F.J. Verhaegh

Survey with 14 participants
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Factors affecting preference

• Musical taste - long term slowly evolving commitment to a genre

• Recent listening history

• Mood or state of mind

• The context:
  listening,  driving, studying, 
  working, exercising, etc.

• The Familiarity

• People sometimes prefer to listen to the familiar songs that they 
like less than non-familiar songs

• Familiarity significantly predicts choice when controlling for the 
effects of liking, regret, and ‘coolness’

Learning Preferences for Music Playlists
A.M. de Mooij and W.F.J. Verhaegh

I Want It Even Though I Do Not Like It: Preference for Familiar but Less Liked Music
Morgan K. Ward,  Joseph K. Goodman,  Julie R. Irwin 20

Coherence
Organizing principals for mix help requests

• Artist / Genre / Style

• Song Similarity

• Event or activity 

• Romance

• Message or story

• Mood

• Challenge or puzzle

• Orchestration

• Characteristic of the mix recipient

• Cultural References

‘More of an Art than a Science’: Supporting the Creation of Playlists and Mixes
Sally Jo Cunningham, David Bainbridge, Annette Falconer 21

“People have gotten used to 
listening to songs in the order 
they want, and they'll want to 
continue to do so even if they 
can't get the individual songs 
from file-trading programs.”

Phil Leigh

Ordering Principals

• Bucket of similars, genre

• Acoustic attributes such as tempo, loudness, danceability

• Social attributes such popularity, ‘hotness’

• Mood attributes (‘sad’ to ‘happy’)

• Theme / Lyrics

• Alphabetical

• Chronological

• Random

• Song transitions

• Novelty orderings
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Novelty ordering

 0    We Wish You A Merry Christmas - Weezer
 1    Stranger Things Have Happened - Foo Fighters
 2    Dude We're Finally Landing - Rivers Cuomo
 3    Gotta Be Somebody's Blues - Jimmy Eat World
 4    Someday You Will Be Loved - Death Cab For Cutie
 5    Dancing In The Moonlight - The Smashing Pumpkins
 6    Take The Long Way Round - Teenage Fanclub
 7    Don't Make Me Prove It - Veruca Salt
 8    The Sacred And Profane - Smashing Pumpkins, The
 9    Everything Is Alright - Motion City Soundtrack
10    Trains, brains & rain - The Flaming Lips
11    No One Needs To Know - Ozma
12    What Is Your Secret - Nada Surf
13    The Spark That Bled - Flaming Lips, The
14    Defending The Faith - Nerf Herder
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Where song order rules
The Dance DJ

• For the Dance DJ - song order and transitions are especially 
important

• Primary goal: make people dance

• How?

• Selecting

• tracks that mix well

• takes the audience on a journey

• audience feedback is important

• Mixing

• seamless song transitions
Is the DJ an Artist?

Is a mixset a piece of art?

By BRENT SILBY
Hang the DJ: Automatic Sequencing and Seamless Mixing of Dance-Music Tracks
Dave Cliff Publishing Systems and Systems Laboratory HP Laboratories Bristol HPL-2000-104 9th August, 
2000* 25

Tempo Trajectories

Warmup Cool down Nightclub

hpDJ: An automated DJ with floorshow feedback
Dave Cliff Digital Media Systems Laboratory HP Laboratories Bristol 26

Coherence
Song to Song

hpDJ: An automated DJ with floorshow feedback
Dave Cliff Digital Media Systems Laboratory HP Laboratories Bristol

Beat Matching and Cross-fading
27

Don’t underestimate the power of the shuffle

THE SERENDIPITY SHUFFLE
Tuck W Leong, Frank Vetere , Steve Howard 

each randomly-sequenced track like an aural postcard
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Serendipity of the shuffle

THE SERENDIPITY SHUFFLE
Tuck W Leong, Frank Vetere , Steve Howard

•  Serendipity can improve the listening experience

• Choosing songs randomly from a personal 
collection can yield serendipitous listening

• Drawing from too large, or too small of a 
collection reduces serendipity

Finding meaningful experience in chance encounters
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People like shuffle play

Randomness as a resource for design
Tuck W Leong, Frank Vetere , Steve Howard 

People shuffle genres, albums and playlists

30



Playlist tradeoffs

Variety Coherence

Freshness Familiarity

Surprise Order

Different listeners have different optimal settings
Mood and context can affect optimal settings
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Playlist Variety
A good playlist is not a bag of similar tracks
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Playlist Variety
A good playlist is not a bag of similar tracks
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Playlist Variety
A good playlist is not a bag of similar tracks
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Playlisting is not Recommendation

Recommendation Playlist

Primarily for music discovery Primarily for music listening

Minimize familiar artists Familiar artists in abundance

Order not important Order can be critical

Limited Context (shopping) Rich contexts - party, 
jogging, working, gifts

However, playlists may be better vector for music 
discovery than traditional recommendation
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Playlisting nuts and 
bolts

formats and rules
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Playlist formats

• Lots of formats - Some notable examples:

• M3U - simple list of files - one per line

• XSPF - ‘spiff ’ - XML based format

• The Playback Ontology 

• Resources:

• http://microformats.org/wiki/audio-info-formats

• http://lizzy.sourceforge.net/docs/formats.html

• http://gonze.com/playlists/playlist-format-survey.html
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Example XSPF

<?xml version="1.0" encoding="UTF-8"?>
<playlist version="1" xmlns="http://xspf.org/ns/0/">
    <trackList>
        <track>
            <location>http://example.com/song_1.mp3</location>
            <creator>Led Zeppelin</creator>
            <album>Houses of the Holy</album>
            <title>No Quarter</title>
            <annotation>I love this song</annotation>
            <duration>271066</duration>
            <image>http://images.amazon.com/images/P/B000002J0B.jpg</image>
            <info>http://example.com</info>
        </track>
       <track>
            <location>http://example.com/song_1.mp3</location>
            <creator>Led Zeppelin</creator>
            <album>ii</album>
            <title>No Quarter</title>
            <annotation>This one too</annotation>
            <duration>271066</duration>
            <image>http://images.amazon.com/images/P/B000002J0B.jpg</image>
            <info>http://example.com</info>
        </track>
    </trackList>
</playlist>
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The Playback Ontology

http://smiy.sourceforge.net/pbo/spec/playbackontology.html http://smiy.wordpress.com/2010/07/27/the-play-back-ontology/

The Play Back Ontology provides basic concepts and properties for describing 
concepts that are related to the play back domain, e.g. a playlist,play back and 
skip counter, on/ for the Semantic Web.

The Playback Ontology

http://smiy.sourceforge.net/pbo/spec/playbackontology.html http://smiy.wordpress.com/2010/07/27/the-play-back-ontology/

Modeling items in the playlist by extending the ordered list ontology

The Playback Ontology

http://smiy.sourceforge.net/pbo/spec/playbackontology.html http://smiy.wordpress.com/2010/07/27/the-play-back-ontology/

Expressing similarity and creation provenance 

Survey of playlisting 
systems and tools



Manual Automated

Social

Non-Social
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Manual

Social

Non-Social

Automated
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Manual Non-Social
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Rush: Repeated Recommendations on Mobile 
Devices

Rush: Repeated Recommendations on Mobile Devices
Dominikus Baur, Sebastian Boring, Andreas Butz 44

Playlist creation tools
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Do people use Smart Playlists?

0

7.5

15

22.5

30

No iTunes Never 1 to 5 6 to 10 11 to 20 21 to 100 over 100

Pe
rc

en
t

Informal poll with 162 respondents
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Manual

Social

Non-Social

Automated
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Automated Non-Social
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Automated Non-Social
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Automated Non-Social

MOG
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Mood Agent

• Use sliders to set levels 
of 5 ‘moods’:

• Sensual

•  Tender

• Happy 

• Angry 

• Tempo

50

AMG tapestry
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Visual Playlist Generation on the Artist Map

Visual Playlist Generation on the Artist Map  
Van Gulick, Vignoli 
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GeoMuzik

GeoMuzik: A geographic interface for large music 
collections: Òscar Celma, Marcelo Nunes 54

Using visualizations to build playlists

MusicBox: Mapping and visualizing music collections

Anita Lillie’s Masters Thesis at the MIT Media Lab
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Search Inside the Music

Using 3D Visualizations to explore and discover music.  
Paul Lamere and Doug Eck 56



Manual Automated

Social

Non-Social
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Automated Social
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Last.fm

Automated Social
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Automated Social
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DMCA Radio

• In a single 3 hour period:

• No more than three songs from the same 
recording 

• No more than two songs in a row, from the 
same recording 

• No more than four songs from the same artist or 
anthology

• No more than three songs in a row from the 
same artist or anthology

Note that there are no explicit rules that limit skipping

US rules for Internet streaming radio

60

Terrestrial Radio Programming
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Radio station programming rules

• Divide the day into a set of  5 (typically) ‘dayparts’.:  
Mid-6A, 6A-10A, 10A-3P, 3P-7P, and 7P-12Mid

• For each daypart:

• Gender, Tempo, Intensity, Mood, Style controls

• Artist separation controls [global and individual artist]

• Prior-day horizontal title separation

• Artist blocks [multiple songs in-a-row by same artist]

• "Never-Violate" and "Preferred" rules

• Hour circulation rules
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Automated Radio Programming

63

Automated Radio Programming

63

Automated Radio Programming

63

Automated Radio Programming
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Manual

Social

Non-Social

Automated
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art of the mix

• Hand made playlists

• Mix art

• Web services

• Pre-crawled data at:

http://labrosa.ee.columbia.edu/projects/musicsim/aotm.html
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fiql.com

• Browse / search for playlists

• Create a playlist:

• Search for artist / songs

• Add songs to a playlist

• Re-order the playlist

• Describe the playlist: 

• title, description, tags

• Decorate the playlist

• Publish the playlist

66

Playlist.com

67

mixpod

68

Spotify
• Sharable playlists

• Collaborative playlists

• Many 3rd party playlist sites
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Spotify
• Sharable playlists

• Collaborative playlists

• Many 3rd party playlist sites

69



Spotify
• Sharable playlists

• Collaborative playlists

• Many 3rd party playlist sites
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Spotify
• Sharable playlists

• Collaborative playlists

• Many 3rd party playlist sites

69

Mix Enablers
mixcloud
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Mix Enablers
mixcloud

• Free social networking platform organized around the 
exchange of long form audio, principally [dance] music

• Provides a means for DJs (aspiring and professional) to 
connect with the audience and into the Web of Things 

70

Mix Enablers
mixlr
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Mix Enablers
mixlr

• focused on adding social 
features to centralized 
multicasting

• supports live and recorded 
(mixed and unmixed) streams

• social connectivity is web-
based, broadcaster is a native 
application

• native app provides integration 
with common DJ tools

72



setlist.fm
A wiki for 

concert setlists
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setlist.fm
A wiki for 

concert setlists

They have an 
API!

73

The Playlisting Dead pool
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research systems

Human-Facilitating 
Systems

Personal Radio

Smart radio: Building music radio on the fly
Conor Hayes and Pádraig Cunningham

• An early collaborative filtering 
system

• Users rated songs directly

• Playlists are built by finding 
similar (via Pearson’s correlation 
coefficient) users

• Playlists can, once built, be 
streamed, named, shared and 
modified

• Order is either random or user 
defined

User ratings are gathered using explicit and implicit user feedback. Users can 
explicitly choose to rate individual track items or individual programmes on a scale 
of 1 – 5, where 5 is the top score. Implicit feedback is important for the less 
interactive or casual user [4]. The reasoning behind this is that the casual user 
wants to interact as little as possible with the system and will intervene only when 
the system gets things badly wrong. In terms of implicit feedback the system 
allocates a score of 4 to recommended programmes and constituent items that have 
been saved to a user’s profile, or to programmes that have been built from scratch 
by the user.  Programmes can be put together in a matter of seconds by simple 
clicking on the desired music item and adding it to the current play list (See figure 
1).  Music items are indexed currently by genre, which is not satisfactory since the 
genre feature is not finely grained enough to capture the nuances within music 
types. Further research is planned on how to allow user indexing of music assets. 
Once a programme has been built it can be played immediately and is automatically 
saved to the users profile for future retrieval. Programmes that are  played more 
than three times are awarded the top score of 5, even though the average rating of  
constituent items may be lower.  Our theory is that a well chosen collection of  
music has greater value than the sum of its constituent items. For one thing, there is 
some work involved in putting together a programme so there is some value in 
choosing something “off the shelf”. For another, a collection of music may contain 
the difficult to quantify feature of “mood” which depends on the collected items 
being played together. This feature is apparent where users amend their ratings for 
individual items as they appear in different programmes. Figure 2 illustrates an 
excerpt for the programme mellow and jazzy in which the user cchayes has rated 
four out of the five shown items. If cchayes chooses mellow and jazzy again he will 
be shown his ratings for the individual items within the programme and he may 
recast his vote. This facility is important because music taste does shift, and user 
profiles will have to move to reflect this. It is entirely probable that a user will 
cease to become a recommender in one neighbourhood only to have moved to 
another.  

 

 

Figure 2: a portion of  play list entitled mellow and jazzy 
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Personal Radio

Smart radio: Building music radio on the fly
Conor Hayes and Pádraig Cunningham

This weight is given by the pearson correlation coefficient between user a and user 
u: 
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Equation 2: Pearson correlation coefficient 

In equation 2, m refers to the number of items the two users have in common.  In 
order to ensure that correlations are not being calculated over a small number of 
common items a further weight is applied. With our current user population we 
found it was necessary to have rated 20 items in common before good 
recommendations were being made.  Therefore, if a pair of users has less than 20 
items in common the correlation obtained by the Pearson measure is devalued by 
m/20. 

 

 

Figure 1: Naming a recently built play list 

 

 

• An early collaborative filtering 
system

• Users rated songs directly

• Playlists are built by finding 
similar (via Pearson’s correlation 
coefficient) users

• Playlists can, once built, be 
streamed, named, shared and 
modified

• Order is either random or user 
defined
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Collaborative Choice

Jukola: democratic music choice in a public space
K. O’Hara, M. Lipson, M. Jansen, A. Unger, H. Jeffries, and P. Macer

JUKOLA 
Jukola is made up of a number of different components which all 
afford different levels of control over the music choice. Music is 
stored as MP3 files in a database on the main unit that also 
comprises standard CD ripping and MP3 collection management 
software.  Being connected to the Internet, the device also retrieves 
from freedb.org and amazon.com, related information and images 
about the song, such as artist and album names and collaborative 
filtering information (e.g. “people who like this song also like these 
artists”). The owner of the space creates an initial pool of music and 
organises it into different collections that can be activated according 
to the musical ambience appropriate for that space at different times 
of the day or week. 

The main Jukola unit serves various different clients over a wireless 
network. The first of these is a 15-inch touch screen display that is 
situated in the public part of the bar (see figure 1).   

  
 

Figure 1. Touch screen public display for  
nominating songs in the bar. 

The interface on the public display (see figure 2) essentially allows 
clientele to browse through the music collection and nominate 
songs to be played by pressing on them.  
 

 
 

Figure 2. The interface for the public display. 

A nominated song remains highlighted in green so that other people 
coming up to the display can see what others have chosen. Unlike a 

traditional Jukebox, the nominated song is not guaranteed to be 
played. Rather, it is subject to voting by other people in the public 
space. The interface also presents information about the song that is 
currently playing (top left of figure 2) as well a short history of the 
recent vote winners (bottom left of figure 2).   

The main unit also serves numerous handheld clients (HP iPAQs) 
distributed on the tables throughout the bar (see figure 3).  

 

 

Figure 3.  The handheld client used to vote for next song. 

The interface on the handheld client presents four candidate songs 
for the next song to be played.  These candidate songs are drawn 
from the list of songs nominated on the public display as well as at 
random from the selected collection (the ratio of random to 
nominated songs is dependent on number of songs currently 
nominated). While the current song is playing, anyone in the bar 
with access to one of the handhelds can register their vote simply by 
touching on one of the four candidate songs. Each iPAQ allows one 
vote per voting round - a voting round being the duration of the 
song currently playing and represented by a timeline at the top of 
the display. A vote can be changed at any point during the voting 
round. The percentages of votes for each song are presented 
dynamically throughout the duration of the voting round so that 
people can monitor ongoing voting performance.  The song with the 
most votes at the end of a voting round is the song that then gets 
played. The handheld clients also display information about the 
currently playing song.  Further information about each song can be 
found be pressing on their respective “i-buttons” (at the top right of 
each candidate song).  This includes information such as the album 
from which the song is drawn, release dates and information about 
related artists. . 

The final component of the system is the web page.  The web page 
provides a playlist history of the songs played by Jukola on any 
particular day (see figure 4).  People simply click on the day in 
which they are interested to reveal the playlist for that day.  One 
aim here is to provide people with some sense of the musical 
ambience for the place.  A second purpose is to allow people who 
have previously visited the bar to reminisce about the music played 
on a particular evening when they visited the bar.  This draws on 
findings in the sociological literature about how people use musical 
references to talk about particular occasions and events of special 
importance to them and friends who may have been there with 
them.  “This is our song” is a canonical example of this type of 
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A public voting system
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Jukola: democratic music choice in a public space
K. O’Hara, M. Lipson, M. Jansen, A. Unger, H. Jeffries, and P. Macer

Decentralized supply

activity.  The same playlist also provides a vehicle by which songs 
can be hyperlinked through to on-line vendors such as Amazon.com 
(this draws on observations from earlier field work on lost impulses 
whereby people hear songs in the environment they wish to buy but 
then subsequently forget about them when an opportunity to 
purchase arises [e.g.15, 16].  

 

Figure 4.  The web interface. 

The second key feature of the web page is a music upload 
capability that allows the broader community to contribute to the 
general pool of music in the Jukola database.  MP3s can be 
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Figure 5.  The Watershed café bar. 

Physically, the Watershed is split into different components: a 
larger main bar area off which there are an entrance hallway and 
corridor-type room (see figure 5). The main area in the centre is the 
largest room that holds the actual food and drinks bar.  Small tables 
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Social playlist: enabling touch points and enriching ongoing relationships through collaborative mobile music listening
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3. METHODOLOGY
Our process reflects a pragmatic and explorative approach with an 
early prototyping phase. Findings from a field study on music use 
framed the initial direction of the project. We conducted 13 
interviews with people aged between 16 and 30 years old (7 
women and 6 men) at concerts, record stores, an upper secondary 
school and at people’s homes. From the field study and our 
differentiation from related projects, we derived a set of design 
goals that drive our design and the resulted prototype. Evaluating 
our approach, we conducted a 2-week prototype field test with a 
group of 5 participants. Setup and findings is described below. 

4. DESIGN GOALS

4.1 Music should help convey status 
information and implicit presence
Most people don’t always prefer a particular artist or genre of 
music. Participants in our field study report that music choice is 
related to the current  mood or to what  they  are doing. While many 
services and other projects address communication of status 
information, these approaches generally limit themselves  to using 
text and pictures for the mediation [c.f. 6,8]. Our approach aim to 
benefit from the strong association between music and everyday 
events to have music present status to a selected group. 

4.2 Music should help build interpersonal 
relationships
Music is commonly used as a starting point  and topic for 
interaction when socializing. Our field study highlights how 
discussing and gossiping around music, genres or artists is a 
popular topic in conversations. Compiling mix tapes and CD-
compilations or sending song files while chatting online are two 
means to share taste with others  demonstrated by the participants 
in  our field study. In these situations, music is a common ground 
for interaction between people, which we intend to use as a touch 
point to support interpersonal relationships in our design.

4.3 A good individual listening experience 
should be supported
Despite the variety of different channels people can learn about 
new music, all participants  in our field study indicate that they 
mainly discover new music through friends. Our purpose is to 
enable a good listening experience for the individual listener 
within a shared group experience.

4.4 Support smooth continuous use
While several projects address social  music listening [c.f. 
1,2,3,4,10], they are generally restricted to a shared location or are 
dependent on additional gadgets. Still, our participants report that 
music listening takes place in  variety of contexts and that music 
choice is  itself related to the context. We target a continuous 
experience with limited need of ongoing user input in using the 
service itself.

5. SOCIAL PLAYLIST
Following  from the design goals, Social Playlist is  a channel for 
collaborative music listening among friends. It is a shared  playlist 
where members associate music from their personal library to 
their activities and locations. The music played is based on the 
selected state of individual members. For each new song to play, 

the system picks a random user and a song from the state the 
picked user last  selected. This way, we intend to  take advantage of 
the association between activities and locations with music to 
have the music in the channel reflect the status of the members. 

The music played is broadcasted to each listener’s mobile device 
through a server. Everyone hears the same music as  the other 
members currently listening. The listeners device displays 
information of the current song and which user assigned it.

6. PROTOTYPE
Social Playlist is implemented 
in  Java with a server-client 
solution. The client runs on 
Nokia S60 phone with 3G 
connectivity. The server stores 
information about  the listeners 
and their music selections. 
Songs  are stored on the server 
and broadcasted to the client 
devices at  listening. The client 
allows users to listen to the 
channel and to change their 
current activity or location. 
The client displays current 
song  title, artist and album 
together with the name of the 
member which selected the 
song. Figure 1 shows the 
interface of the client.

7. FIELD TEST SETUP
The field test is conducted to discover unseen aspects of music 
use as  well  as how people experience music listening  in a 
collaborative mobile setting. We carried out a 2-week field test of 
our prototype with a group of 5 participants.  The participants are 
Swedish, 3 males and 2 females, with ages between 23-45 years 
old. They have known each other for at least 6 months. All are 
interested in music listening with flexible jobs allowing them to  
use the service continuously. They share a professional 
relationship but occasionally socialize in their free time. 
During the field test period, participants sent individual self 
reports to the research team on three occasions. The evaluation 
closed with a 40 minute individual interview with each of the 
participants. Topics covered in  the self-reports and interviews 
reflected aspects of the individual  listening experience, discovery 
about music and friends through the service, interactions within 
the group, awareness of other participants activities and general 
attitudes towards the service. 

8. RESULTS

8.1 Music as status information to describe 
current state of mind
Personal music choice is strongly associated with the current state 
of mind, and the music preferences to illustrate that association is 
multidimensional. Our participants choose music to fit moods 
(happy, sad), according to weather (sunny, rainy, overcast) and for 
specific activities (cooking, cleaning, partying). Participants use a 
combination of different dimensions for music selection and for 

Figure 1. Client interface for 
the Social Playlist prototype.
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song and which user assigned it
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Implications

• Smooth integration with individual music listening to encourage 
continuous use

• Allow flexibility and cues to support self- expression and enable 
touch points

• Support ongoing relationships

• Counterbalance experiences of bad songs and misinterpretations
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the training set, not from meta-training data. When AutoDJ generates playlists, the user
may select only one training example. No useful similarity metric can be derived from one
training example, so AutoDJ uses meta-training to learn the kernel.
The idea of meta-training comes from the “learning to learn” or multi-task learning litera-
ture [2, 5, 10, 13]. This paper is most similar to Minka & Picard [10], who also suggested
fitting a mean and covariance for a Gaussian Process based on related functions. However,
in [10], in order to generalize the covariance beyond the meta-training points, a Multi-Layer
Perceptron (MLP) is used to learn multiple tasks, which requires non-convex optimization.
The Gaussian Process is then extracted from the MLP. In this work, using a quadratic pro-
gram, we fit a parameterized Mercer kernel directly to a meta-training kernel matrix in
order to generalize the covariance.
Meta-training is also related to algorithms that learn from both labeled and unlabeled
data [3, 6]. However, meta-training has access to more data than simply unlabeled data:
it has access to the values of the meta-training functions. Therefore, meta-training may
perform better than these other algorithms.

2 Gaussian Process Regression for Playlist Generation
AutoDJ uses GPR to generate a playlist every time a user selects one or more songs. GPR
uses a Gaussian Process (GP) as a prior over functions. A GP is a stochastic process Y (x)
over a multi-dimensional input space x. For anyN , ifN vectors xi are chosen in the input
space, and the N corresponding samples yi are drawn from the GP, then the yi are jointly
Gaussian.
There are two statistics that fully describe a GP: the mean µ(x) and the covarianceK(x,x�).
In this paper, we assume that the GP over user preference functions is zero mean. That is, at
any particular time, the user does not want to listen to most of the songs in the world, which
leads to a mean preference close enough to zero to approximate as zero. Therefore, the co-
variance kernel K(x,x�) simply turns into a correlation over a distribution of functions g:
K(x,x�) =< g(x)g(x�) >.
In section 3, we learn a kernel K(x,x�) which takes music metadata as x and x�. In this
paper, whenever we refer to a music metadata vector, we mean a vector consisting of 7
categorical variables: genre, subgenre, style, mood, rhythm type, rhythm description, and
vocal code. This music metadata vector is assigned by editors to every track of a large
corpus of music CDs. Sample values of these variables are shown in Table 1. Our kernel
functionK(x,x�) thus computes the similarity between two metadata vectors correspond-
ing to two songs. The kernel only depends on whether the same slot in the two vectors are
the same or different. Specific details about the kernel function are described in section 3.2.

Metadata Field Example Values Number of
Values

Genre Jazz, Reggae, Hip-Hop 30
Subgenre Heavy Metal, I’m So Sad and Spaced Out 572
Style East Coast Rap, Gangsta Rap, West Coast Rap 890
Mood Dreamy, Fun, Angry 21
Rhythm Type Straight, Swing, Disco 10
Rhythm Description Frenetic, Funky, Lazy 13
Vocal Code Instrumental, Male, Female, Duet 6

Table 1: Music metadata fields, with some example values
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• Use Gaussian Process Regression to create playlists based on seed 
tracks

• Using Kernel Meta-Training algorithm on albums to select the priors

• Playlists are formed based on the maximum log likelihood from the 
selected seed song

Number of Seed Songs
Playlist Method 1 2 3 4 5 6 7 8 9
KMT + GPR 42.9 46.0 44.8 43.8 46.8 45.0 44.2 44.4 44.8
Hamming + GPR 32.7 39.2 39.8 39.6 41.3 40.0 39.5 38.4 39.8
Hamming + No GPR 32.7 39.0 39.6 40.2 42.6 41.4 41.5 41.7 43.2
Random Order 6.3 6.6 6.5 6.2 6.5 6.6 6.2 6.1 6.8

Table 2: R Scores for Different Playlist Methods. Boldface indicates best method with
statistical significance level p < 0.05.

where Rmax
j is the score from (11) if that playlist were perfect (i.e., all of the true playlist

songs were at the head of the list). Thus, an R score of 100 indicates perfect prediction.
The results for the 9 different experiments are shown in Table 2. A boldface result shows
the best method based on pairwise Wilcoxon signed rank test with a significance level of
0.05 (and a Bonferroni correction for 6 tests).
There are several notable results in Table 2. First, all of the experimental systems perform
much better than random, so they all capture some notion of playlist generation. This
is probably due to the work that went into designing the metadata schema. Second, and
most importantly, the kernel that came out of KMT is substantially better than the hand-
designed kernel, especially when the number of positive examples is 1–3. This matches the
hypothesis that KMT creates a good prior based on previous experience. This good prior
helps when the training set is extremely small in size. Third, the performance of KMT +
GPR saturates very quickly with number of seed songs. This saturation is caused by the
fact that exact playlists are hard to predict: there are many appropriate songs that would be
valid in a test playlist, even if the user did not choose those songs. Thus, the quantitative
results shown in Table 2 are actually quite conservative.

Playlist 1 Playlist 2
Seed Eagles, The Sad Cafe Eagles, Life in the Fast Lane
1 Genesis, More Fool Me Eagles, Victim of Love
2 Bee Gees, Rest Your Love On Me Rolling Stones, Ruby Tuesday
3 Chicago, If You Leave Me Now Led Zeppelin, Communication Breakdown
4 Eagles, After The Thrill Is Gone Creedence Clearwater, Sweet Hitch-hiker
5 Cat Stevens, Wild World Beatles, Revolution

Table 3: Sample Playlists
To qualitatively test the playlist generator, we distributed a prototype version of it to a few
individuals in Microsoft Research. The feedback from use of the prototype has been very
positive. Qualitative results of the playlist generator are shown in Table 3. In that table,
two different Eagles songs are selected as single seed songs, and the top 5 playlist songs
are shown. The seed song is always first in the playlist and is not repeated. The seed song
on the left is softer and leads to a softer playlist, while the seed song on the right is harder
rock and leads to a more hard rock play list.

5 Conclusions
We have presented an algorithm, Kernel Meta-Training, which derives a kernel from a
set of meta-training functions that are related to the function that is being learned. KMT
permits the learning of functions from very few training points. We have applied KMT to
create AutoDJ, which is a system for automatically generating music playlists. However,
the KMT idea may be applicable to other tasks.
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Traveling Sales Playlist?

2.1 Audio-based and Web-based Combination
In [22], audio-based as well as web-based genre classifica-

tion are used for the task of style detection on a set of 5
genres with 5 artists each. Combining the predictions made
by both methods linearly yields perfect overall prediction for
all test cases. In [4], audio-based track similarity is linearly
combined with web-based artist similarity to obtain a new
similarity measure. In [9], we augment an interface to music
collections with terms obtained from the web. The interface
consists of a three-dimensional island landscape that places
the musical pieces according to their sound similarity. The
user can freely navigate in this virtual environment. The ex-
ploration is supported by presenting terms on the landscape
that are related to the audio content in that region and the
corresponding artists. Thus, it provides semantic feedback
based on music.

2.2 Automatic Playlist Generation
The problem of playlist generation is treated as a net-

work flow problem in [1]. Given a start track and an end
track in a song collection, the algorithm finds a path (of
user-defined length) through the network satisfying user-
defined constraints. Each piece is labeled with a number
of boolean attributes representing arbitrary aspects of the
music. [2] presents a more efficient approach for handling
various types of meta-data. According to user-defined con-
straints, the meta-data of each track is transformed into a
cost function. The playlist is constructed by iteratively op-
timizing an initial randomly chosen playlist with regard to
the cost function. In [11], labeled tracks are not assumed,
since the playlist generation algorithm is based on a music
similarity function (cf. [12]), which can be computed auto-
matically. Several approaches are evaluated for producing
a playlist of given length for a given start track. In [7], a
highly interactive user interface that facilitates music explo-
ration and playlist generation is presented. The user can
grab pieces of music from similarity-based flows of tracks to
create playlists. The interface presented in [21] relies on an
underlying map (regardless whether automatically or manu-
ally created) and puts a focus on social interaction at playlist
creation.

For creating playlists on mobile devices, [14] incorporates
Self-Organizing Maps (SOM) [10]. SOMs are used to clus-
ter similar pieces of music and are visualized by means of
Smoothed Data Histograms, cf. [17]. This visualization leads
to a 2-dimensional representation of the collection which is
inspired by geographical maps. Playlists can be defined in-
tuitively by drawing paths on the map.

From our point of view, users are seldom capable of paying
much attention to the management of their playlists while
en route. Therefore, we have presented an approach that
makes a complete music collection easily accessible through
a simple wheel [18]. This approach automatically organizes
a music collection into a large circular playlist by applying a
Traveling Salesman Algorithm on the calculated music sim-
ilarity. If such an algorithm succeeds in finding the best
tour, the generated playlist satisfies the constraint that con-
secutive tracks are maximally similar on average. The whole
playlist and thus the whole collection is accessible with only
one circular controller – the “wheel” (cf. Figure 1).

In this paper, we present an extension to the “wheel”.
While the original approach involves the calculation of acous-
tical similarities between every pair of songs in a collection,

Figure 1: A screenshot of our Java applet “Trav-
eller’s Sound Player”.

we incorporate web-based data to reduce the number of nec-
essary similarity calculations. To this end, we retrieve infor-
mation about artists from the web, which we use to assess
the similarity of artists. It turns out that by using this
combination, we can reduce the number of necessary simi-
larity calculations considerably and also improve the basic
approach that is based on audio only.

3. METHODOLOGY
With our playlist generation approach, we aim at max-

imizing the average similarity between consecutive tracks
in a playlist, and thus, obtaining playlists containing large
sections of consistent music. A resulting playlist can be in-
terpreted as a projection of the whole collection onto one di-
mension. The collection is arranged around a circular wheel.
Coherent areas of different musical styles should emerge nat-
urally around the wheel; these can then be directly accessed
via a simple wheel turn.

In this section, we explain our approach to generate one
large playlist consisting of all tracks from the collection by
modeling a Traveling Salesman Problem (TSP). First, we
describe the functionality of the original approach that op-
erates on a full matrix of musical distances obtained from
an audio-based similarity function. This comprises the cal-
culating audio similarity and applying a TSP algorithm.
Subsequently, we describe our enhancement based on in-
corporating web-derived features. Since the web provides
knowledge and opinions of a large number of people, also
“cultural” aspects are covered by this approach.

3.1 Audio-based Similarity
In this work, we decided to use the well-established algo-

rithmic outline proposed by Aucouturier and Pachet in [3],
since it outperforms most other audio-based approaches,
cf. [15]. This approach is based on Mel Frequency Cep-
stral Coefficients (MFCCs) computed on short-time audio
segments. As proposed in [3], we calculated 19 MFCCs.
Each track is then represented as a Gaussian Mixture Model
(GMM) of the distribution of MFCCs. The similarity of two
tracks is calculated by sampling from one GMM and deter-
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• Using a combination of content-based song 
and web-based artist similarity to generate a 
distance matrix

• Approximation of TSP is used to find ‘tours’ 
through the collection

• Tested on two collections of about 3000 
tracks 
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music by one artist. Incorporating web-based information
has no effect at all. The second scenario is a collection of
tracks where each track is performed by a different artist,
e.g. a collection of “one-hit wonders”. In this case, the artist
similarity is directly applicable as track similarity. However,
it is questionable whether this is desirable, especially since
it also requires quite an effort to acquire the necessary in-
formation for all artists.

This leads to the final consideration regarding runtime –
the time necessary for the web retrieval. Even though re-
trieval of the web pages is linear in the number of artists,
downloading and processing 50 related pages is time con-
suming (approximately 30 seconds per artist). Neverthe-
less, the proposed approach can be modified such that other
meta-information are incorporated and exploited to calcu-
late similarities, e.g. manually assigned artist information.

5. CONCLUSIONS
We have presented an approach to accelerating automatic

playlist generation. This is accomplished by incorporating
musical artist similarity based on web data. Besides the
achieved improvements in runtime complexity, we could also
show that the combination of audio-based similarity mea-
sures with web-based data improves the resulting playlists
in terms of stylistic consistency. We further proved the use-
fulness of the created playlists with a small user study.

An important aspect of this paper is the bridging of the
gap between audio-based track similarity and web-based
artist similarity. Indeed, we have shown that these comple-
mentary approaches are very powerful in conjunction. Thus,
we can conclude that the proposed combination technique
can also be used to reduce complexity and improve the re-
sults of similar tasks like automatic music recommendation.
For future work, we aim at reducing the effort to be made
to obtain web-based features.
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on our second collection, descending from 1× 1 (au-
dio only) to 10 × 10 SOM. Dark segments indicate a
high agglomeration of tracks from the corresponding
genre. The genres are ordered by the index where
most pieces of that genre are accumulated. Thus, in
the optimum case a playlist would tend to result in
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Graph Methods
Dijkstra's algorithm

1. Assign to every node a distance value. Set it to zero for our initial 
node and to infinity for all other nodes.

2. Mark all nodes as unvisited. Set initial node as current.

3. For current node, consider all its unvisited neighbors and calculate 
their tentative distance (from the initial node). 

4. When we are done considering all neighbors of the current node, 
mark it as visited.  A visited node will not be checked ever again; its 
distance recorded now is final and minimal.

5. If all nodes have been visited, finish. Otherwise, set the unvisited 
node with the smallest distance (from the initial node) as the next 
"current node" and continue from step 3.
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Graph Methods
Dijkstra's algorithm
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Graph Methods
minimum spanning tree
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Graph Methods
min cut/max flow
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Social Playlists and Bottleneck Measurements: 
Exploiting Musician Social Graphs Using Content-Based Dissimilarity and Pairwise Maximum Flow Values 
Fields, Ben and Jacobson, Kurt and Rhodes, Christophe and Casey, Michael

94

Graph-Based Path Finding

Social Playlists and Bottleneck Measurements: 
Exploiting Musician Social Graphs Using Content-Based Dissimilarity and Pairwise Maximum Flow Values 
Fields, Ben and Jacobson, Kurt and Rhodes, Christophe and Casey, Michael

• A directed graph is created based on 
the friend connections amongst artists 
found on myspace

• The edges of this graph are weighted using 
content-based similarity

• Playlists are constructed through the use of 
the max flow/min cut from a starting 
to ending artist
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Points-In-Space
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Start-End Timbrel Paths

 Playlist Generation Using Start and End Songs
Arthur Flexer, Dominik Schnitzer, Martin Gasser and Gerhard Widmer

1. For every song, calculate divergence from 
select start (            ) and end (            ) 
songs

2. Find d% songs with highest divergence from 
start song; repeat against end song. Remove 
songs that appear in both sets.

3. Compute divergent ratio for remaining 
songs:

ISMIR 2008 – Session 2a – Music Recommendation and Organization

HiHo Regg Funk Elec Pop Rock
No. 226 60 56 918 158 1148
% 9 2 2 36 6 45

Table 1. Number of songs and percentages across genres
in our data base. Genres are Hip Hop, Reggae, Funk, Elec-
tronic, Pop and Rock.

trian public radio station FM4. This internet platform allows
artists to present their music free of any cost in the WWW.
All interested parties can download this music free of any
charge. At the moment this music collection contains about
10000 songs but it is only organised alphabetically and in
a coarse genre taxonomy. The artists themselves choose
which of the six genre labels “Hip Hop, Reggae, Funk, Elec-
tronic, Pop and Rock” best describe their music. We use a
development data base of 2566 songs for our experiments.
Number of songs and percentages across genres are given in
Tab. 1. The distribution of genres is quite unbalanced with
“Electronic” and “Rock” together taking up 81%. This is
representative of the full data base.

From the 22050Hz mono audio signals two minutes from
the center of each song are used for further analysis. We di-
vide the raw audio data into non-overlapping frames of short
duration and use Mel Frequency Cepstrum Coefficients
(MFCC) to represent the spectrum of each frame. MFCCs
are a perceptually meaningful and spectrally smoothed rep-
resentation of audio signals. MFCCs are now a standard
technique for computation of spectral similarity in music
analysis (see e.g. [6]). The frame size for computation of
MFCCs for our experiments was 46.4ms (1024 samples).
We used the first 20 MFCCs for all our experiments.

3 METHODS

Our playlist generation algorithm consists of two basic parts:
(i) computation of similarities between songs, (ii) computa-
tion of the actual playlists based on these similarities. Please
note that the actual generation of playlists does not rely on a
specific similarity function and could therefore also be done
using different approaches towards computation of similar-
ity.

3.1 Computing spectral similarity of songs

We use the following approach to music similarity based on
spectral similarity. For a given music collection of songs, it
consists of the following steps:

1. for each song, compute MFCCs for short overlapping
frames as described in Sec. 2

2. train a single Gaussian (G1) to model each of the songs

3. compute a similarity matrix between all songs using
the Kullback-Leibler divergence between respective
G1 models

We use one single Gaussian (G1) with full covariance to
represent the MFCCs of each song [8]. For single Gaus-
sians, p(x) = N (x; µp,σp) and q(x) = N (x; µq,σq), there
is a closed form of the Kullback-Leibler divergence [13]:

KLN (p‖q) = 0.5 log
(

det (Σp)
det (Σq)

)
+ 0.5Tr

(
Σ−1

p Σq

)

+ 0.5 (µp − µq)
′ Σ−1

p (µq − µp) −
d

2
(1)

where Tr(M) denotes the trace of the matrix M , Tr(M) =
Σi=1..nmi,i. Dropping constants and symmetrizing the di-
vergence yields the following approximation [17]:

DKL(p, q) = Tr
(
Σ−1

p Σq

)
+ Tr

(
Σ−1

q Σp

)

+ Tr
((

Σ−1
p + Σ−1

q

)
(µp − µq) (µq − µp)

′)

(2)

Please note that this approximation is symmetric, i.e.
DKL(p, q) = DKL(q, p), and that the self-similarity is
non-zero, i.e. DKL(p, p) #= 0. Actually, DKL(p, p) =
2d with d being the dimensionality of the data vectors (20
MFCCs in our case).

3.2 Computing playlists

Our algorithm for computation of a playlist of length p (ex-
cluding start and end song) for a database of n songs Si,
starting at song Ss and ending at song Se consists of the
following steps:

1. for all i = 1, ..., n songs compute the divergences to
the start song DKL(i, s) and the end song DKL(i, e)

2. find the d% songs with greatest divergence DKL(i, s)
to the start song Ss; find the d% songs with greatest
divergence DKL(i, e) to the end song Se; discard all
songs which are in both of these groups; keep remain-
ing m songs for further processing

3. for all i = 1, ...,m songs compute a divergence ratio:

R(i) =
DKL(i, s)
DKL(i, e)

(3)

4. compute step width for playlist:

step =
R(s) − R(e)

p + 1
(4)
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non-zero, i.e. DKL(p, p) #= 0. Actually, DKL(p, p) =
2d with d being the dimensionality of the data vectors (20
MFCCs in our case).

3.2 Computing playlists

Our algorithm for computation of a playlist of length p (ex-
cluding start and end song) for a database of n songs Si,
starting at song Ss and ending at song Se consists of the
following steps:

1. for all i = 1, ..., n songs compute the divergences to
the start song DKL(i, s) and the end song DKL(i, e)

2. find the d% songs with greatest divergence DKL(i, s)
to the start song Ss; find the d% songs with greatest
divergence DKL(i, e) to the end song Se; discard all
songs which are in both of these groups; keep remain-
ing m songs for further processing

3. for all i = 1, ...,m songs compute a divergence ratio:

R(i) =
DKL(i, s)
DKL(i, e)

(3)

4. compute step width for playlist:

step =
R(s) − R(e)

p + 1
(4)
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HiHo Regg Funk Elec Pop Rock
No. 226 60 56 918 158 1148
% 9 2 2 36 6 45

Table 1. Number of songs and percentages across genres
in our data base. Genres are Hip Hop, Reggae, Funk, Elec-
tronic, Pop and Rock.

trian public radio station FM4. This internet platform allows
artists to present their music free of any cost in the WWW.
All interested parties can download this music free of any
charge. At the moment this music collection contains about
10000 songs but it is only organised alphabetically and in
a coarse genre taxonomy. The artists themselves choose
which of the six genre labels “Hip Hop, Reggae, Funk, Elec-
tronic, Pop and Rock” best describe their music. We use a
development data base of 2566 songs for our experiments.
Number of songs and percentages across genres are given in
Tab. 1. The distribution of genres is quite unbalanced with
“Electronic” and “Rock” together taking up 81%. This is
representative of the full data base.

From the 22050Hz mono audio signals two minutes from
the center of each song are used for further analysis. We di-
vide the raw audio data into non-overlapping frames of short
duration and use Mel Frequency Cepstrum Coefficients
(MFCC) to represent the spectrum of each frame. MFCCs
are a perceptually meaningful and spectrally smoothed rep-
resentation of audio signals. MFCCs are now a standard
technique for computation of spectral similarity in music
analysis (see e.g. [6]). The frame size for computation of
MFCCs for our experiments was 46.4ms (1024 samples).
We used the first 20 MFCCs for all our experiments.

3 METHODS

Our playlist generation algorithm consists of two basic parts:
(i) computation of similarities between songs, (ii) computa-
tion of the actual playlists based on these similarities. Please
note that the actual generation of playlists does not rely on a
specific similarity function and could therefore also be done
using different approaches towards computation of similar-
ity.

3.1 Computing spectral similarity of songs

We use the following approach to music similarity based on
spectral similarity. For a given music collection of songs, it
consists of the following steps:

1. for each song, compute MFCCs for short overlapping
frames as described in Sec. 2

2. train a single Gaussian (G1) to model each of the songs

3. compute a similarity matrix between all songs using
the Kullback-Leibler divergence between respective
G1 models

We use one single Gaussian (G1) with full covariance to
represent the MFCCs of each song [8]. For single Gaus-
sians, p(x) = N (x; µp,σp) and q(x) = N (x; µq,σq), there
is a closed form of the Kullback-Leibler divergence [13]:
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where Tr(M) denotes the trace of the matrix M , Tr(M) =
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DKL(p, q) = DKL(q, p), and that the self-similarity is
non-zero, i.e. DKL(p, p) #= 0. Actually, DKL(p, p) =
2d with d being the dimensionality of the data vectors (20
MFCCs in our case).

3.2 Computing playlists

Our algorithm for computation of a playlist of length p (ex-
cluding start and end song) for a database of n songs Si,
starting at song Ss and ending at song Se consists of the
following steps:

1. for all i = 1, ..., n songs compute the divergences to
the start song DKL(i, s) and the end song DKL(i, e)

2. find the d% songs with greatest divergence DKL(i, s)
to the start song Ss; find the d% songs with greatest
divergence DKL(i, e) to the end song Se; discard all
songs which are in both of these groups; keep remain-
ing m songs for further processing

3. for all i = 1, ...,m songs compute a divergence ratio:

R(i) =
DKL(i, s)
DKL(i, e)

(3)

4. compute step width for playlist:

step =
R(s) − R(e)

p + 1
(4)
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% 9 2 2 36 6 45
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in our data base. Genres are Hip Hop, Reggae, Funk, Elec-
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All interested parties can download this music free of any
charge. At the moment this music collection contains about
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“Electronic” and “Rock” together taking up 81%. This is
representative of the full data base.
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duration and use Mel Frequency Cepstrum Coefficients
(MFCC) to represent the spectrum of each frame. MFCCs
are a perceptually meaningful and spectrally smoothed rep-
resentation of audio signals. MFCCs are now a standard
technique for computation of spectral similarity in music
analysis (see e.g. [6]). The frame size for computation of
MFCCs for our experiments was 46.4ms (1024 samples).
We used the first 20 MFCCs for all our experiments.

3 METHODS

Our playlist generation algorithm consists of two basic parts:
(i) computation of similarities between songs, (ii) computa-
tion of the actual playlists based on these similarities. Please
note that the actual generation of playlists does not rely on a
specific similarity function and could therefore also be done
using different approaches towards computation of similar-
ity.

3.1 Computing spectral similarity of songs

We use the following approach to music similarity based on
spectral similarity. For a given music collection of songs, it
consists of the following steps:

1. for each song, compute MFCCs for short overlapping
frames as described in Sec. 2

2. train a single Gaussian (G1) to model each of the songs

3. compute a similarity matrix between all songs using
the Kullback-Leibler divergence between respective
G1 models

We use one single Gaussian (G1) with full covariance to
represent the MFCCs of each song [8]. For single Gaus-
sians, p(x) = N (x; µp,σp) and q(x) = N (x; µq,σq), there
is a closed form of the Kullback-Leibler divergence [13]:
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Please note that this approximation is symmetric, i.e.
DKL(p, q) = DKL(q, p), and that the self-similarity is
non-zero, i.e. DKL(p, p) #= 0. Actually, DKL(p, p) =
2d with d being the dimensionality of the data vectors (20
MFCCs in our case).

3.2 Computing playlists

Our algorithm for computation of a playlist of length p (ex-
cluding start and end song) for a database of n songs Si,
starting at song Ss and ending at song Se consists of the
following steps:

1. for all i = 1, ..., n songs compute the divergences to
the start song DKL(i, s) and the end song DKL(i, e)

2. find the d% songs with greatest divergence DKL(i, s)
to the start song Ss; find the d% songs with greatest
divergence DKL(i, e) to the end song Se; discard all
songs which are in both of these groups; keep remain-
ing m songs for further processing

3. for all i = 1, ...,m songs compute a divergence ratio:

R(i) =
DKL(i, s)
DKL(i, e)

(3)

4. compute step width for playlist:

step =
R(s) − R(e)

p + 1
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5. compute p ideal positions (i.e. ideal divergence ratios)
R̂(j), j = 1, ..., p :

R̂(j) = R(s) + j ∗ step (5)

6. select the p real songs Sj that best match the ideal
divergence ratios R̂(j), j = 1, ..., p :

Sj = arg min
i=1,...,m

|R̂(j) − R(i)| (6)

The main part of our algorithm is the computation of di-
vergence ratios R(i). Songs which are closer to the start
song Ss than to the end song Se will have a divergence ratio
R(i) < 1. Songs which are closer to the end song Se than
to the start song Ss will have a divergence ratio R(i) > 1.
Songs which have about the same divergence to both songs
will have a divergence ratio R(i) around 1. Songs which
have a big divergence to both start and end song will there-
fore also have a divergence ratio R(i) around 1 and therefore
might end up as part of the middle section of a playlist. This
is of course not as desired since only songs which are close
to either or both the start and end song should be part of the
playlist. Songs too distant from both start and end song ap-
pear as outliers to the listeners. Therefore we discard songs
which are distant to both start and end song during step 2
of the above algorithm. The amount of songs we discard is
controlled with the parameter d. In initial experiments we
found out that d = 95% works well for this data set.

The playlist is then computed in the divergence ratio space:
R(s) serves as the starting position and R(e) as the end po-
sition of the list. The aim is to find p songs which are at
equally spaced positions between these start and end posi-
tions. This is done by computing a step width in step 4 of the
algorithm, computing ideal positions for the playlist songs
in the divergence ratio space in step 5 and finally finding
songs that best match these ideal positions in step 6.

4 RESULTS

4.1 Objective evaluation

One possibility to achieve an objective evaluation is to use
the genre labels as indicators of music similarity. For a
playlist with start song belonging to genre A and end song
belonging to genre B we formulate the following hypothe-
ses:

• the playlist should contain mostly songs from genres
A and B

• at the beginning of the playlist, most songs should be
from genre A, at the end from genre B and from both
genres in the middle

nearest neighbour classification
HiHo Regg Funk Elec Pop Rock

HiHo 73 8 0 11 4 4
t Regg 35 33 2 13 5 12
r Funk 20 5 29 16 13 18
u Elec 13 7 3 56 8 13
e Pop 22 3 4 13 26 32

Rock 4 1 1 3 4 87

Table 2. Confusion matrix of genre classification results
(nearest neighbour classification vs. true genre label). Re-
sults are given in percentages separately per genre in each
row. Genres are Hip Hop, Reggae, Funk, Electronic, Pop
and Rock.

The success of such an approach depends strongly on
how well the genre labels actually indicate music similarity.
This can be measured by looking at the genre classification
results. Table 2 gives a confusion matrix for a 10-fold cross-
validation experiment with one-nearest neighbour classifi-
cation using the divergences DKL. Results are given in
percentages separately per genre in each row. Some of the
genres can be classified very well (Hip Hop: 73%, Rock:
87%), others somewhat well (Electronic: 56%) and some
quite badly (Reggae, Funk and Pop are all around 30%).
Consequently, any playlist evaluation relying on the genre
information should do quite well on genres Hip Hop, Rock
and maybe Electronic. But it would show the same confu-
sion of labels for all other genres.

We randomly chose 50 songs from each of the six gen-
res as candidates for start and end songs. Since our playlist
algorithm gives identical members of playlists in reversed
order when start and end songs are exchanged, we need to
look at only (6 × (6 − 1))/2 = 15 possible combinations
of our six genres. For each combination of two genres A
and B, we compute all possible 50 × 50 playlists using the
candidate songs as start and end songs. This yields 37500
playlists altogether. The length of each playlist is nine songs
excluding start and end songs. We divide all playlists in
three sections (first, middle and last three songs) and report
distribution of songs across genres in the playlists. Instead
of showing results for all possible 15 combinations of gen-
res we concentrate on a number of examples showing the
range of quality one can expect.

Table 3 shows the results for playlists starting at Hip Hop
and ending at Rock. Both genres dominate (33% and 38%)
the beginning of the playlists (Sec1). Whereas Hip Hop
quickly diminishes to 5% and 2%, Rock rises to 81% and
88% at the end.

The results for playlists starting at Hip Hop and ending
at Electronic (Tab. 4) as well as for playlists starting at Elec-
tronic and ending at Rock (Tab. 5) work equally well. The
respective genres dominate the beginning of the playlists.
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5. compute p ideal positions (i.e. ideal divergence ratios)
R̂(j), j = 1, ..., p :

R̂(j) = R(s) + j ∗ step (5)

6. select the p real songs Sj that best match the ideal
divergence ratios R̂(j), j = 1, ..., p :

Sj = arg min
i=1,...,m

|R̂(j) − R(i)| (6)
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vergence ratios R(i). Songs which are closer to the start
song Ss than to the end song Se will have a divergence ratio
R(i) < 1. Songs which are closer to the end song Se than
to the start song Ss will have a divergence ratio R(i) > 1.
Songs which have about the same divergence to both songs
will have a divergence ratio R(i) around 1. Songs which
have a big divergence to both start and end song will there-
fore also have a divergence ratio R(i) around 1 and therefore
might end up as part of the middle section of a playlist. This
is of course not as desired since only songs which are close
to either or both the start and end song should be part of the
playlist. Songs too distant from both start and end song ap-
pear as outliers to the listeners. Therefore we discard songs
which are distant to both start and end song during step 2
of the above algorithm. The amount of songs we discard is
controlled with the parameter d. In initial experiments we
found out that d = 95% works well for this data set.

The playlist is then computed in the divergence ratio space:
R(s) serves as the starting position and R(e) as the end po-
sition of the list. The aim is to find p songs which are at
equally spaced positions between these start and end posi-
tions. This is done by computing a step width in step 4 of the
algorithm, computing ideal positions for the playlist songs
in the divergence ratio space in step 5 and finally finding
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One possibility to achieve an objective evaluation is to use
the genre labels as indicators of music similarity. For a
playlist with start song belonging to genre A and end song
belonging to genre B we formulate the following hypothe-
ses:

• the playlist should contain mostly songs from genres
A and B

• at the beginning of the playlist, most songs should be
from genre A, at the end from genre B and from both
genres in the middle

nearest neighbour classification
HiHo Regg Funk Elec Pop Rock

HiHo 73 8 0 11 4 4
t Regg 35 33 2 13 5 12
r Funk 20 5 29 16 13 18
u Elec 13 7 3 56 8 13
e Pop 22 3 4 13 26 32

Rock 4 1 1 3 4 87

Table 2. Confusion matrix of genre classification results
(nearest neighbour classification vs. true genre label). Re-
sults are given in percentages separately per genre in each
row. Genres are Hip Hop, Reggae, Funk, Electronic, Pop
and Rock.

The success of such an approach depends strongly on
how well the genre labels actually indicate music similarity.
This can be measured by looking at the genre classification
results. Table 2 gives a confusion matrix for a 10-fold cross-
validation experiment with one-nearest neighbour classifi-
cation using the divergences DKL. Results are given in
percentages separately per genre in each row. Some of the
genres can be classified very well (Hip Hop: 73%, Rock:
87%), others somewhat well (Electronic: 56%) and some
quite badly (Reggae, Funk and Pop are all around 30%).
Consequently, any playlist evaluation relying on the genre
information should do quite well on genres Hip Hop, Rock
and maybe Electronic. But it would show the same confu-
sion of labels for all other genres.

We randomly chose 50 songs from each of the six gen-
res as candidates for start and end songs. Since our playlist
algorithm gives identical members of playlists in reversed
order when start and end songs are exchanged, we need to
look at only (6 × (6 − 1))/2 = 15 possible combinations
of our six genres. For each combination of two genres A
and B, we compute all possible 50 × 50 playlists using the
candidate songs as start and end songs. This yields 37500
playlists altogether. The length of each playlist is nine songs
excluding start and end songs. We divide all playlists in
three sections (first, middle and last three songs) and report
distribution of songs across genres in the playlists. Instead
of showing results for all possible 15 combinations of gen-
res we concentrate on a number of examples showing the
range of quality one can expect.

Table 3 shows the results for playlists starting at Hip Hop
and ending at Rock. Both genres dominate (33% and 38%)
the beginning of the playlists (Sec1). Whereas Hip Hop
quickly diminishes to 5% and 2%, Rock rises to 81% and
88% at the end.

The results for playlists starting at Hip Hop and ending
at Electronic (Tab. 4) as well as for playlists starting at Elec-
tronic and ending at Rock (Tab. 5) work equally well. The
respective genres dominate the beginning of the playlists.
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• The playlist should contain mostly songs 
from genres A and B

• At the beginning of the playlist, most songs 
should be from genre A, at the end from 
genre B and from both genres in the middle
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HiHo Regg Funk Elec Pop Rock
Sec1 33 5 2 15 8 38
Sec2 5 1 2 7 4 81
Sec3 2 0 3 4 2 88

Table 3. Distribution of songs across genres in playlists
starting at Hip Hop and ending at Rock. Results given for
first, middle and last section of playlists (Sec1 to Sec3).

HiHo Regg Funk Elec Pop Rock
Sec1 30 5 2 35 8 19
Sec2 6 2 3 66 5 18
Sec3 2 2 3 70 4 18

Table 4. Distribution of songs across genres in playlists
starting at Hip Hop and ending at Electronic. Results given
for first, middle and last section of playlists (Sec1 to Sec3).

The start genres diminish quickly and the end genres are
most prominent in the last sections (Sec3). Tables 3 to 5
give results for the three genres which also achieve the best
classification results (see Tab. 2). The results are basically in
line with the two hypotheses we formulated at the beginning
of this section. Only the fact that the end genre is already
very prominent at the beginning of the playlists (Sec1) is a
bit surprising. This might be due to the fact that the end gen-
res in Tables 3 to 5 are also the most numerous in our data
base (Electronic 36% and Rock 45% of all songs in the data
base, see Tab. 1).

Table 6 shows the results for playlists starting at Reggae
and ending at Rock. The amount of songs from genre Rock
rises from 38% to 80% to 88% going from Sec1 to Sec3 as
expected. Genre Reggae is somewhat under-represented in
all sections of the playlists. Going back to the genre classi-
fication confusion matrix in Tab. 2, it is clear that there is a
lot of mix-up between genres Reggae and Hip Hop. Conse-
quently, Tab. 6 shows a considerable amount of Hip Hop in
Sec1, diminishing towards Sec3.

The results for playlists starting at Funk and ending at
Pop given in Tab. 7 are even less satisfactory. The genre
classification confusion matrix in Tab. 2 shows that genre

HiHo Regg Funk Elec Pop Rock
Sec1 13 3 2 42 6 34
Sec2 8 2 2 8 5 77
Sec3 5 1 3 3 3 85

Table 5. Distribution of songs across genres in playlists
starting at Electronic and ending at Rock. Results given for
first, middle and last section of playlists (Sec1 to Sec3).

HiHo Regg Funk Elec Pop Rock
Sec1 26 7 2 20 7 38
Sec2 6 1 2 7 4 80
Sec3 3 0 2 4 2 88

Table 6. Distribution of songs across genres in playlists
starting at Reggae and ending at Rock. Results given for
first, middle and last section of playlists (Sec1 to Sec3).

HiHo Regg Funk Elec Pop Rock
Sec1 19 3 8 28 13 29
Sec2 17 4 4 20 19 36
Sec3 12 3 4 22 16 42

Table 7. Distribution of songs across genres in playlists
starting at Funk and ending at Pop. Results given for first,
middle and last section of playlists (Sec1 to Sec3).

Funk is confused with almost all other genres and genre
Pop strongly with genre Rock. As a result, the only visi-
ble trend in Tab. 7 is a rising amount of songs from genres
Pop and Rock going from Sec1 to Sec3. This clearly indi-
cates the limits of our approach to objective evaluation of
playlist generation. Such an evaluation only makes sense
with reliable genre label information.

The amount of songs which are being excluded from be-
coming members of the playlist because of being too dis-
similar from both start and end song was set to d = 95% for
all experiments (see step 2 in Sec. 3.2). Relaxing this con-
straint to smaller values leads to less clear distribution of
genres (i.e. less songs in the playlists have the same genre
label as the start and end songs).

4.2 Subjective evaluation

Our playlist generation algorithm can be utilised by users
of the FM4 Soundpark website 2 to create their own digital
“mixtapes” online. Therefore the best evaluation would be
a user study with people actually using this service on the
internet. Such a user study is planned for the future. During
the development phase of the project, we decided to do an
internal form of user study by having one of the authors lis-
ten to a number of playlists and judge their quality. This one
person has considerable experience with popular music for
having been a record collector and DJ for about two decades.
While this approach has the problem of being highly subjec-
tive it does have the advantage of actually judging the “raw”
playlists instead of a certain implementation and user inter-
face.

As pointed out in Sec. 4.1, our playlist algorithm gives
identical members of playlists in reversed order when start

2 http://fm4.orf.at/soundpark
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Table 7. Distribution of songs across genres in playlists
starting at Funk and ending at Pop. Results given for first,
middle and last section of playlists (Sec1 to Sec3).

Funk is confused with almost all other genres and genre
Pop strongly with genre Rock. As a result, the only visi-
ble trend in Tab. 7 is a rising amount of songs from genres
Pop and Rock going from Sec1 to Sec3. This clearly indi-
cates the limits of our approach to objective evaluation of
playlist generation. Such an evaluation only makes sense
with reliable genre label information.

The amount of songs which are being excluded from be-
coming members of the playlist because of being too dis-
similar from both start and end song was set to d = 95% for
all experiments (see step 2 in Sec. 3.2). Relaxing this con-
straint to smaller values leads to less clear distribution of
genres (i.e. less songs in the playlists have the same genre
label as the start and end songs).

4.2 Subjective evaluation

Our playlist generation algorithm can be utilised by users
of the FM4 Soundpark website 2 to create their own digital
“mixtapes” online. Therefore the best evaluation would be
a user study with people actually using this service on the
internet. Such a user study is planned for the future. During
the development phase of the project, we decided to do an
internal form of user study by having one of the authors lis-
ten to a number of playlists and judge their quality. This one
person has considerable experience with popular music for
having been a record collector and DJ for about two decades.
While this approach has the problem of being highly subjec-
tive it does have the advantage of actually judging the “raw”
playlists instead of a certain implementation and user inter-
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As pointed out in Sec. 4.1, our playlist algorithm gives
identical members of playlists in reversed order when start

2 http://fm4.orf.at/soundpark
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• How many outliers are in the playlist which 
do not fit the overall flavour of the playlist?

• Is the order of songs in the playlist from the 
start to the end song apparent?
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and end songs are exchanged. Therefore, we look at only
(6× (6− 1))/2 = 15 possible combinations of our six gen-
res (see two leftmost columns in Tab. 8). For each combi-
nation of two genres A and B, we randomly choose three
of the 50 × 50 playlists computed as described in Sec. 4.1.
This gives 45 playlists for evaluation. Our evaluator listened
to all the playlists using the “XMMS 1.2.10 - Cross plat-
form multimedia player” 3 . He would first listen to the start
song, then the end song and then the songs in between in
the correct order. The evaluator was allowed to freely move
through a song by skipping parts and moving back and forth
in time. He was also allowed to re-listen to songs in the
playlist if necessary.

For each playlist, the evaluator was asked to answer the
following two questions which are tightly connected to our
two hypotheses formulated in Sec. 4.1:

• How many outliers are in the playlist which do not fit
the overall flavour of the playlist?

• Is the order of songs in the playlist from the start to
the end song apparent?

The first question should allow to judge whether all the
songs in a playlist really are similar to either the start or the
end song, or are located somewhere in the intended middle.
The second question aims at the sequential ordering of the
songs. Songs at the beginning should be more similar to the
start song, songs at the end to the end song. The second
question can be answered with either “yes”, “somewhat” or
“no”.

The results of the evaluation are given in Tab. 8. For
each combination of genres, the average number of outliers
is given (average taken over three playlists). It is also in-
dicated how the second question has been answered for the
three playlists of a certain combination of genres. Each “x”
in a column stands for the respective answer given for one
playlist. So for each row (i.e. combination of genres) three
“x” indicate three answers to the second question. At the
bottom row, the average number of outliers is given as well
as the percentages of different answers to the question about
the sequential order of the playlists is given.

The average number of outliers in a playlist is quite low
at 1.1 out of possible 9. This means that on average, a user
might want to delete one song from an automatically cre-
ated playlist. While for a lot of combinations of genres this
number is 0 and therefore perfect, for some genre combina-
tions the number of outliers is quite high. E.g. for playlists
starting at Hip Hop and ending at Reggae, an average of 4.7
songs are rated as outliers. The reasons seems to be that
for a listener, the defining part of a Reggae song is the off-
beat percussion which is not well conserved in our timbral
representation of music. Instead, the rhythm guitar seems

3 http://www.xmms.org

Genres # of order apparent
from to outliers yes somewhat no
HiHo Regg 4.7 x xx
HiHo Funk 1.7 xx x
HiHo Elec 1.3 xxx
HiHo Pop 2.7 xx x
HiHo Rock 0 xxx
Regg Funk 0.7 xx x
Regg Elec 1.3 xxx
Regg Pop 1.3 xxx
Regg Rock 0.3 xx x
Funk Elec 1.0 xx x
Funk Pop 1.7 xx x
Funk Rock 0 xx x
Elec Pop 0 xxx
Elec Rock 0 xx x
Pop Rock 0 xxx

average 1.1 71.1% 17.8% 11.1%

Table 8. Results of the subjective evaluation. For each com-
bination of genres, the average number of outliers and the
answers to the question concerning the order in the playlist
is given. At the bottom row, average number of outliers as
well as the percentages of different answers to the question
about order are given.

to dominate the models giving rise to high similarities with
certain types of rock songs. Other sources of mistakes are
recordings of poor acoustic quality which are found to be
similar to each other no matter what the genres of the songs
are. The sequential order of the playlists seems to work
very well with it being apparent in 71% of all playlists and
“somewhat” apparent in another 17.8%. One problem with
the sequential ordering that we noticed is a kind of “tilting”-
effect at the middle of playlists: the first half would be very
close to the start song, the second half to the end song but
a sort of smooth transition is missing. This was sometimes
the case if start and end songs are very different and the data
base might not even contain songs fitting in between. An-
other problem are too many outliers obscuring the overall
order of a playlist.

As with the objective evaluation in Sec. 4.1, relaxing the
amount of songs which are being excluded from becoming
members of the playlist below d = 95% (see step 2 in Sec.
3.2) results in more outliers and less clear sequential order
of the playlists.
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• The co-occurrence of objects in an 
authored stream can be used as a 
proxy for object similarity

• This sort of similarity is especially effective 
for the generation of playlists

• Employs the use of an undirected graph, 
weighted by co-occurrence counts
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between songs fall into three distinct groups: audio
content analysis, metadata similarity and collaborative
filtering. Audio content analysis relies on comparing
features such as pitch, rhythm and timbre. Metadata
similarity relies on comparing metadata fields such as
genre or sub-genre. Collaborative filtering relies on
comparing records such as purchasing patterns among
customers. We review related work in Section 2.

This paper describes a novel approach for inferring
similarity between objects which have no natural idea
of distance between them. We do this by using what we
believe to be a previously unexploited source of infor-
mation: the expertise and knowledge about “likeness”
implicit in authored streams. For example the play or-
der of a broadcast music station contains valuable infor-
mation about the songs contained in the list: their joint
membership of a particular genre, their relative popu-
larity, and their pairwise suitability to appear in close
proximity in playlists. Our method works by exploiting
this information for a large number of authored streams.
We will refer to any audio stream that has been gen-
erated by a professional DJ as an Expertly Authored
Stream (EAS). We will discuss in Section 3.1 sources of
such data.

Our method is very simple: we construct an undi-
rected graph where every song is a node, and song ad-
jacency contributes to the weight of an arc connecting
two nodes. Suppose for example the play order of one
of our EAS’s is that of a station that plays 1980’s pop
hits. A labeled section of the EAS might look like:

2:37 Salisbury Hill Genesis
2:41 With or Without You U2
2:45 Every Move You Make The Police
2:48 Summer of ’69 Bryan Adams
2:51 Born in the USA Bruce Springsteen

In fact, we require only a label that identifies each
song uniquely. If we represent the individual songs by
symbols our ordered list might take the form:

ABGDEABDWFGSEWJKE (1)

where we use ”W” to denote a break, or a time gap
larger than a threshold T. In the work reported here we
chose T to be 5 minutes. This indicates a break for com-
mercials, news, traffic updates or another discontinuity
in the EAS. From this we produce a graph by drawing
an undirected arc between all adjacent objects; for ex-
ample B is adjacent to A, G and D in the list. We denote
the arc joining nodes X and Y by the unordered pair
(X,Y ). Thus here, the arcs (B,G) and (B,D) would
have weight one, while the arc (B,A) would have weight
two. This is shown in Figure 1.

This is repeated for all objects until we have repre-
sented all adjacencies by links on the graph. The graph
we construct in Section 4 will have tens of thousands of
nodes. A simple way to estimate similarities then flows
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Figure 1: Graph representing the labeled stream
in (1). Songs represent nodes and adjacency in-
creases the weight of the link between two nodes.

from techniques to determine distances on graphs. The
distance can be modeled as being inversely related to
the weights on the graph. Thus A in Figure 1 will be
closer to E than to other nodes on the graph.

A very simple way to produce a playlist also follows.
Start with a seed node, say, A. Choose the next objects
from the set of objects that have arcs to A of weight at
least one: SA = {B,E}. For example, a subsequent ob-
ject may be chosen with likelihood proportional to the
weight of the arc. Repeat this procedure on the newly
chosen object. We will describe the actual algorithm
used below.

The contribution of this paper is to draw attention to
a previously unexploited source of information: namely
the order information in expertly authored streams. We
show how this may be used to infer “likeness” between
songs based on actual play patterns, rather than on any
articulated rules or preferences or manually determined
genre labelings. We show how to use this for an auto-
matic playlist generation algorithm that scales to collec-
tions of millions of songs without difficulty. Compared
to previous playlist generation methods our scheme has
the advantage that it explicitly produces a measure of
similarity between songs; it does not require access to a
(human-generated) genre metadata database; the simi-
larity measures improve automatically without human
intervention as more data becomes available, and the
scheme can handle very large collections easily.

2. RELATEDWORK
There has been significant recent growth in the re-

search activity in the areas of multimedia content index-
ing and retrieval. We can give no more than a sampling
of recent work in this area. Since our focus is primarily
on song objects we will concentrate on recently reported
work on playlist generation and music discovery.
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song and the previous song is much tighter in style. This
can be extended indefinitely, of course, but it eventually
degrades to matching only a particular radio station,
approximately.

The distribution of songs following the songs can also
be a mix of that following the current song and that
following the previous song, with some discount factor
on the previous song. This simpler approach still miti-
gates the effects of choosing unlikely steps, and can also
be extended as far as desired.

A penalty function can directly bias a generated playlist
towards the original seed or given list (such as a partic-
ular radio station). This minimizes overall drift. Local
low-probability choices for individual songs can be elim-
inated by a cutoff on the number of times an arc must
be observed in the source data in order to be present
in the graph (although that will bias heavily towards
songs that are frequently played).

4. EXPERIMENTS

4.1 Examples Playlists
We now present a few sample playlists to illustrate

the scheme. Each playlist is seeded by a single song,
which is the starting point. The accompanying numbers
represent the distance from the seed. Our first example
starts with “Paperback Writer” by the Beatles:

Paperback Writer [Beatles] 0.0
Breakfast In America [Supertramp] 8.607
We’re An American Band [Grand Funk Rrd] 8.607
In The Dark [Billy Squier] 17.244
I Shot The Sheriff [Eric Clapton] 12 .192
Fat Bottomed Girls [Queen] 16.335
Jumpin’ Jack Flash [Rolling Stones] 13.723
Working For The Weekend [Loverboy] 15.251
Dream Weaver [Gary Wright] 15.520
Smells Like Teen Spirit! [Nirvana] 15.735
Can’t Stop [Red Hot Chili Peppers] 16.732
Still Waiting [Sum 41] 19.256
Grave Digger [Dave Matthews] 20. 665

Note that the list stays within the broad category of mu-
sic that could be considered close: for example it never
strays into Jazz, Country, Hip Hop or Punk. Our next
example is a Country song “Stand by Your Man” by
Tammy Wynette:

Stand By Your Man [Tammy Wynette] 0.0
Chrome [Trace Adkins] 8.607
Stay With Me (Brass Bed) [Josh Gracin] 8.607
Whiskey Girl [Toby Keith] 14.162
Class Reunion [Lonestar] 13.965
My Sister [Reba McEntire] 12.650
Could Have Fooled Me [Adam Gregory] 12.777

Nothin’ To Lose [Josh Gracin] 8.607
Who’s Your Daddy [Toby Keith] 13.695
Want Fries With That [Tim McGraw] 8.607
Hell Yeah [Montgomery Gentry] 14.214
Awful, Beautiful Life [Darryl Worley] 12.607
Let Them Be Little [Billy Dean] 13.777

Again observe that the list stays entirely within the
genre of Country music. Finally, starting with a Nir-
vana song:

Lithium [Nirvana] : 0.0
Fall To Pieces [Velvet Revolver] 7.668
Tonight, Tonight [Smashing Pumpkins] 12.712
Slow Hands [Interpol] 12.712
Renegades Of Funk [Rage Against...] 10.127
Before I Forget [Slipknot] 7.355
The Kids Aren’t Alright [Offspring] 11.712
All These Things That I’ve Done [Killers] 9.542
Weapon [Matthew Good] 18.914
Kryptonite [3 Doors Down] 11.127
Home [Three Days Grace] 8.712
Whatever [Godsmack] 10.127
Colors [Crossfade] 7.097

4.2 Music Similarities
Our random walk playlist generation induces a desir-

able variety and unpredictability. However to evaluate
our similarity measure, we also list the shortest path
songs for a number of different seed songs. Note that
the resulting playlists adhere much more closely to the
seed song than the random walk playlists given above:

Hey Jude [Beatles] 0.000
Lady Madonna [Beatles] 7.515
Lucy In The Sky With Diamonds [Beatles] 7.515
Peace Of Mind [Boston] 7.737
(Just Like) Starting Over [John Lennon] 7.737
Saturday In The Park [Chicago] 8.000
Shine It All Around [Robert Plant] 8.000
Holiday [Green Day] 8.000
Rock And Roll Heaven [Righteous Brothers] 8.000

Highway To Hell [AC/DC] 0.000
Best Of You [Foo Fighters] 6.252
Remedy [Seether] 6.362
Right Here [Staind] 6.362
Holiday [Green Day] 6.362
Be Yourself [Audioslave] 6.5 58
The Hand That Feeds [Nine Inch Nail s] 6.584
B.Y.O.B. [System Of A Down] 6.754
Happy? [Mudvayne] 6.847
Shine It All Around [Robert Plant] 6.982

Stand By Your Man [Tammy Wynette] 0.000
You’ll Be There [George Strait] 5.800
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Playlist Steering

• Create a timbrel features

• Create the space using tuple and triple n-
gram sequences from playlist logs

• Generate playlists via Tag Steering
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Playlist Steering
1. Select a seed track

2. Threshold transition matrix to generate set of possible 
next tracks

3. User creates a tag cloud, assigning weights to any of 360 
tags

4. Autotagger creates tag cloud for all candidate tracks 
selected in (2).  Cosine distance is taken between the 
user’s tag cloud and each song’s.

5. The track with the minimum cosine distance from seed is 
played

Steerable Playlist Generation by Learning Song Similarity from Radio Station Playlists
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each track and the user’s personal cloud.

5.1 Steps for generating a steerable playlist

Our playlist generation algorithm works as follows :
1. A seed track ts ∈ T is selected amongst all possible

tracks.
2. The similarity model is used to compute transitional

probabilities between the seed song and all other ones (with
more similar songs having higher transition probabilities),
keeping only the top ϕ, or thresholding at a certain transi-
tion probability ρ. Let T be the group of these top songs:

T = arg max
ti∈T\ts

ϕM(ts, ti) (1)

3. The user is then invited to create a tag cloud CU by
assigning weights to any of the 360 tags in the system. In
this way the cloud is personalized to represent the mood or
type of songs the user would like to hear. The higher the
weight of a particular tag, the more impact it will have on
the selection of the next song.

4. Autotagger is used to generate a tag cloud Ctj for all
tracks tj ∈ T . The cosine distance (cd(·)) between these
tag clouds and CU is used to find the song that best matches
the abstract musical context the user described with his or
her cloud:

tmin = arg min
tj∈T

cd(CU , Ctj ) (2)

5. The track tmin is selected to play next. Since the sys-
tem is transparent, we can tell the user we chose the song
tmin because it has a certain transition probability from
the seed song but also because its tag cloud overlapped
with CU in a particular way. The user can then go back
and modify the tag cloud CU to influence how subsequent
songs will be selected.

Naturally, a lot of extra factors can be used when de-
termining which song to play in step 4. For instance, we
could consider the user’s taste profile to take into account
what types of songs he normally likes, mixing his current
steerable cloud to the one representing his musical tastes.
We could also include a discovery heuristic to balance the
number of novel songs selected as opposed to ones the user
already knows.

5.2 Example playlists

To illustrate the effect of the steerable tag cloud, we gener-
ate two playlists seeded with the same song but with very
different steerable clouds. The first 9 iterations of both
playlists are shown in Table 4. The effect of the cloud is
clearly visible by the different direction each playlist takes.
In our view, this transition is done smoothly because it is
constrained by the underlying similarity model.

To visualize the similarity space and the playlist gener-
ating algorithm, we compute a full track-to-track similarity
matrix and reduce its dimensionally using the t-SNEE [18]
algorithm (see Figure 1). We chose t-SNEE because it
tends to retain local distances while sacrificing global dis-
tances, yielding an appropriate two-dimensional visualiza-
tion for this task (i.e. the distance between very similar

Table 4. Both the following playlists are seeded with the
song Clumsy by Our Lady Peace. To give a clear point
of reference, we use the tag clouds of actual songs as the
steerable cloud. The soft tag cloud is made up of the tags
for Imagine by John Lennon and the hard tag cloud with
the tags for Hypnotize by System of a Down.

Soft tag cloud
Viva la Vida by Coldplay

Wish You Were Here by Pink Floyd
Peaceful, Easy Feeling by Eagles

With or Without You by U2
One by U2

Fields Of Gold by Sting
Every Breath You Take by The Police
Gold Dust Woman by Fleetwood Mac
Enjoy The Silence by Depeche Mode

Hard tag cloud
All I Want by Staind

Re-Education (Through Labor) by Rise Against
Hammerhead by The Offspring
The Kill by 30 Seconds To Mars

When You Were Young by The Killers
Hypnotize by System of a Down

Breath by Breaking Benjamin
My Hero by Foo Fighters

Turn The Page by Metallica

songs is more important to us than the relative global place-
ment of, e.g., jazz with respect to classical). We have over-
laid the trajectory of the two playlists in Table 4 to illustrate
their divergence.

6. CONCLUSIONS

We have demonstrated a method for learning song simi-
larity based on radio station playlists. The learnt model
induces a new space in which similar songs fit well when
played successively in a playlist. Several classifiers were
evaluated on a retrieval task, with SdAs and MLPs per-
forming better than other similarity models in reconstruct-
ing song sequences from professional playlists. Though
we were unable to show that SdAs outperform MLPs, we
did show much better performance than logistic regres-
sion and measures such as G1C over standard audio fea-
tures. Furthermore we argue that our model learns a direct
similarity measure in the space of short song sequences
rather than audio or meta-data based similarity. Finally,
we showed a way of doing steerable playlist generation by
using our similarity model in conjunction with a tag-based
distance measure.

Though this model is only a first step, its power and sim-
plicity lie in the fact that its two components play very dif-
ferent but complementary roles. First, the similarity model
does the grunt work by getting rid of all unlikely candi-
dates, as it was trained specifically for that task. This then
greatly facilitates the steerable and fine-tuned selection of
the subsequent track based on the textual aura, as most of
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Playlist Steering

Steerable Playlist Generation by Learning Song Similarity from Radio Station Playlists
Maillet, François and Eck, Douglas and Desjardins, Guillaume and Lamere, Paul

Oral Session 4: Music Recommendation and Playlist Generation

Figure 1. Part of the 2-d representation of the track-to-
track similarity matrix generated by a 2-song sequence
SdA model. The trajectories of the two playlists described
in Table 4 are overlaid over the tracks. Both playlists are
seeded with the same song, which is represented by the
bigger dot. Each playlist diverges because of the steerable
tag cloud that is guiding its generation.

the obvious bad picks have already been removed.
Future work should attempt to use the number of occur-

rences of each sequence to give more importance to more
reliable sequences. Also, the model might learn a better
similarity space by being trained with richer features as in-
put. For example, adding meta-data such as tags, a measure
of popularity, the year the song was recorded, etc., might
prove helpful. Such a richer input space is likely necessary
to show a performance gain for SdAs over competing prob-
abilistic classifiers. Our experiments also led us to believe
that an increase in the quality of the learnt similarity could
probably be attained by simply adding more training data,
something that can be easily accomplished as thousands of
songs are played on the radio everyday.
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Scaling up playlisting

Scaling up playlist generation

• Building playlists involves satisfying constraints. e.g.

• Global constraints: No duplicate songs, No 
consecutive artists,  tempo between 120 and 130 
BPM

• Ordering constraints: no consecutive artists, 
DMCA rules

• Sorting constraints:  ordered by danceability and 
loudness

• Playlist length: 15 songs, 32 minutes, < 20mb

• Finite constraint satisfaction problem. It’s NP-HARD

109

General Approach

• Playlist is a sequence of songs:  S1, S2 ... Sn 
drawn from a large pool of songs

• Cost(Sn, C) is how well song S at position N 
satisfies constraint C

• Cost(Sn) is total cost for song S at position N for 
all constraints

• Cost(P) is total cost of all songs in the Playlist

• Goal: Find S1, ... Sn that minimizes Cost(P)

110

Scaling up playlist generation

SCALING UP MUSIC PLAYLIST GENERATION
Jean-Julien Aucouturier, Francois Pachet

Generate random playlist

while Cost(P) > threshold:
    Calculate Cost(Sn) for each song
    find max( Cost(sN) ) that is not Tabu
    find best possible replacement

worst variables for which no value can be found to decrease the total cost 
are labelled as Tabu for a given number of iterations.

Typical runtime:  1.4 seconds for 10 song playlist from a pool of 20,000 
songs with 10 constraints
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Case-based sequential ordering 
of songs for playlist recommendation

Case-based Sequential Ordering of Songs for Playlist Recommendation⋆
Claudio Baccigalupo and Enric Plaza 112
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Case-based sequential ordering 
of songs for playlist recommendation

Case-based Sequential Ordering of Songs for Playlist Recommendation⋆
Claudio Baccigalupo and Enric Plaza 112

Fast Generation of Optimal Music Playlists 
using Local Search

Fast Generation of Optimal Music Playlists using Local Search
Steffen Pauws, Wim Verhaegh, Mark Vossen

• Simulated Annealing

• Heuristic Improvements

• Song domain reduction

• Two level search:  

• 1:  Replace, Insert Delete

• 2: Swap

• Partial constraint voting

Typical runtime:  2 seconds 
for 14 song playlist with 15 
constraints  from a pool of 
2,000 songs
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Echo Nest Playlister

initial song selection

world of songs

song poolplaylist rules

song constraint
satisfaction engine

final playlist generation

populate with data

• Start with millions of 
songs

• Apply global 
constraints to create 
smaller song pool 
(1K to 10K songs)

• Use constraint engine 
to find best playlist:

• Beam search

• Adaptive search

• Populate with data 
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Beam Search
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Group Playlisting

129

• Group Playlisting:

• Radio, Clubs, Offices, Health clubs, The Web

• Group playlisting challenges

• Varying and conflicting music tastes

• Different levels of assertiveness

• Traditional

• Dictator,  Compromise, Random, opt-out

Group Cost Functions

• New cost functions for group playlisting: social 
cost function:

• Average happiness -  group vote of members

• Maximum happiness - vote of the happiest group 
member

• Minimum misery - vote of the least happy

Group Recommending: A methodological Approach based on Bayesian Networks
Luis M. de Campos, Juan M. Ferna !ndez-Luna, Juan F. Huete, Miguel A. Rueda-Morales 130

Group costs

Ben Paul Tom Avg Max Min

2 10 1 4.33 10 1

4 3 3 3.33 4 3

6 2 7 5 6 2

131

• Uses simple voting mechanism - ‘average happiness’

• Each listener agent votes:

• Artist previously listened == high votes

• Genre previous listened == positive vote

• Songs with more votes have higher probability 
of being played

• Never play 2 songs by same artist in a row

• Loose coherence of genre across tracks

Flytrap

Flytrap: Intelligent Group Music Recommendation
Andrew Crossen, Jay Budzik, and Kristian J. Hammond

132

1. Translate the request histories of all requesters 
into ratings for artists.

2. Predict ratings for each artist that a requester has 
never requested.

3. Determine what artists are the most popular 
among the listening audience.

4. Determine what artists are similar to the final 
artist on the playlist.

5. Select a song to play that is performed by an artist 
that is both popular among the listening requesters 
and similar to the artist that precedes it.

Flycasting

Flycasting: On the Fly Broadcasting
James C. French and David B. Hauver 133

!e goal of the Reuse Process is to combine different individual 
preferences into a global group ranking of the candidate songs

How to Combine Different Individual Preferences

0.9

I Spy (Pulp)

Lazy (Suede)

Ex.: three listeners have diverging individual preferences 
over which candidate song to play after I Spy (Pulp)retrieved 
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A Case-Based Song Scheduler
for Group Customised Radio
Claudio Baccigalupo – Enric Plaza

1. To avoid misery, any candidate song that is hated by some 
listener automatically gets the lowest group preference degree

How to Combine Different Individual Preferences
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A Case-Based Song Scheduler
for Group Customised Radio
Claudio Baccigalupo – Enric Plaza

2. To ensure fairness, the group preference degree of the remaining 
candidates equals to the average of the individual preferences

How to Combine Different Individual Preferences
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A Case-Based Song Scheduler
for Group Customised Radio
Claudio Baccigalupo – Enric Plaza

3. To guarantee individual satisfactions, listeners whose preferred 
song was not selected in this turn are to be favoured next

How to Combine Different Individual Preferences
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4. !e satisfaction degree of a listener for previous songs changes 
her weight in the calculation of the average group preference

How to Combine Different Individual Preferences
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Beat-matching
Cross-fading

Beat-matching and cross-fading

• Select songs with similar tempos

• Select transition location

• Similar rhythmic pattern

• Specific sections (last 30 seconds of song 1 and 
first 30 seconds of song 2)

• Align their beats over the course of a transition

• Cross-fade the volumes

Creating Music by Listening
by Tristan Jehan

140



First, find the beats

Creating Music by Listening
by Tristan Jehan
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First, find the beats

Creating Music by Listening
by Tristan Jehan
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Time scaling

Creating Music 
by Listening
by Tristan Jehan
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Beat-matching and cross-fading

Creating Music by Listening
by Tristan Jehan
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Rihanna (122 bpm) (95 bpm)  Gotan Project

Some Examples

Bob Marley to Bob Marley

April March to April March

Sade to Sting

144

Evaluating playlists



Subjective Analysis

Direct Listening Tests
hypotheses

1. Playlists compiled by PATS contain more 
preferred songs than randomly assembled 
playlists, irrespective of a given context-of-
use.

2. Similarly, PATS playlists are rated higher than 
randomly assembled playlists, irrespective of a 
given context-of-use.

PATS: Realization and User Evaluation of an Automatic Playlist Generator
Steffen Pauws and Berry Eggen 147

Direct Listening Tests
hypotheses

3. Successive playlists compiled by PATS 
contain an increasing number of preferred 
songs.

4. Similarly, successive PATS playlists are 
successively rated higher.

5. Successive playlists compiled by PATS 
contain more distinct and preferred songs 
than randomly assembled playlists.

PATS: Realization and User Evaluation of an Automatic Playlist Generator
Steffen Pauws and Berry Eggen 148

• Three measures: precision, coverage and rating score

• 20 participants (17m, 3f), 8 sessions over 4 days per 
participant

• User selects a song, given a context (4 playlist per 
context)

• A PATS playlist and a random playlist are generated 
(11 songs each, 1 minute excerpts)

• Judgements expressed per song, ratings per playlist

PATS: Realization and User Evaluation of an Automatic Playlist Generator
Steffen Pauws and Berry Eggen

Direct Listening Tests
set-up

149

PATS: Realization and User Evaluation of an Automatic Playlist Generator
Steffen Pauws and Berry Eggen

Direct Listening Tests
results

PATS: Realization and User Evaluation of an Automatic Playlist Generator 

personal instantiations of the two different contexts-of-use, an 

elicitation of the music that would fit the contexts-of-use and a 

‘highly preferred’ song for each context-of-use. 

For all four days, they were instructed to restrict their music 

listening behavior to the instantiation of each context-of-use. 

Also, the same ‘highly preferred’ song was used to set up a 

playlist for a given context-of-use. 

3.3.2 Interactive system 
An interactive computer application was implemented to listen 

and judge a playlist by using a standard mouse and a graphical 

user interface. Title, and names of composers and artists of a song 

were shown. Songs in a playlist were not displayed list-wise, but 

were presented one-by-one. Controls for common music play 

features and for going through a playlist were provided. Also, 

buttons for indicating preference in terms of ‘good’ and ‘bad’ per 

song in the playlist were provided. 

Participants were instructed how to operate the interactive system. 

Information about interactive procedures to follow during an 

experimental session was readily available to the participants 

during the whole experiment. 

3.3.3 Design 
A factorial within-subject design with three independent variables 

was applied. The first independent variable playlist generator 
referred to the method used for music compilation, that is, PATS 

or random. The second independent variable context-of-use 

referred to the two pre-defined contexts-of-use, that is, soft music 

and lively music. The order in which the levels of context-of-use 

and playlist generator were applied was counterbalanced. The 

third independent variable session referred to the four 

experimental sessions in which playlists were listened to in a 

given context-of- use. These sessions were intended to measure 

adaptive properties and long-term use of the compilation strategies 

in terms of changes in playlist quality as a function of time. 

3.3.4 Test material and equipment 
A music database comprising 300 one-minute excerpts of jazz 

songs (MPEG-1 Part 2 Layer II 128 Kbps stereo) from 100 

commercial CD albums served as test material. The music 

collection covered 12 popular jazz styles. These styles cover a 

considerable part of the whole jazz period. Each style contained 

25 songs. Pilot experiments showed that the shortness and sound 

quality of the excerpts did not negatively influence judgment. The 

test equipment consisted of a SUN Sparc-5 workstation, 

APC/CS4231 codec audio chip, and two Fostex 6301 B personal 

monitors (combined amplifier and loudspeaker system). 

Participants were seated behind a desk in front of a 17-inch 

monitor (Philips Brilliance 17A) in a sound-proof experimental 

room. They could adjust the audio volume to a preferred level. 

Both the mouse pad and the monitor were positioned at a 

comfortable working level. 

3.3.5 Task 
The task was to listen to a set of 11 songs (one-minute excerpts) 

that made up a playlist, while imagining a fixed and pre-defined 
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3.4 Results 
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3.4.1 Precision 
The results for the precision measure are shown in Figure 3. 

Figure 3.  Mean precision (and standard error) of the playlists 
in different contexts-of-use. The left-hand panel (a) shows 

mean precision for both playlist generators (PATS and 
random) in the ‘soft music’ context-of-use. The right-hand 
panel (b) shows mean precision for both generators in the 

‘lively music’ context-of-use.
A MANOVA analysis with repeated measures was conducted in 

which session (4), context-of-use (2), and playlist generator (2) 

were treated as within-subject independent variables. Precision 
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was dependent variable. A main effect for playlist generator was 
found to be significant (F(1,19) = 89.766, p < 0.0001). Playlists 
compiled by PATS contained more preferred songs than randomly 
assembled playlists (mean precision: 0.69 (PATS), 0.45 
(random)). A main effect for context-of-use was found to be 
significant (F(1,19) = 13.842, p < 0.005). Playlists for the ‘soft 
music’ context-of-use contained more preferred songs (mean 
precision: 0.63 (soft music), 0.51 (lively music)). An interaction 
effect for playlist generator by session was just not significant 
(F(3,17) = 2.675, p = 0.08), whereas, in the univariate test, it was 
found to be significant (F(3,57) = 2.835, p < 0.05). Further 
analysis of this interaction effect revealed a significant difference 
in mean precision between the fourth PATS playlist and mean 
precision of preceding PATS playlists in contrast to randomly 
assembled playlists (F(1,19) = 8.935, p < 0.01). In other words, 
each fourth PATS playlist contained more preferred songs than the 
preceding three PATS playlists (mean precision of fourth PATS 
session: 0.76; mean precision of the first three PATS sessions: 
0.67). No other effects were found to be significant. 

3.4.2 Coverage 
The results for the coverage measure are shown in Figure 4. 

Figure 4. Mean coverage (and standard error) of the playlists 
in different contexts-of-use. Recall that coverage is a 

cumulative measure. The left-hand panel (a) shows mean 
coverage for both playlist generators (PATS and random) in 

the ‘soft music’ context-of-use. The right-hand panel (b) shows 
mean coverage for both generators in the ‘lively music’ 

context-of-use. Note the maximally achievable coverage in four 
successive playlists is 40. 

A MANOVA analysis with repeated measures was conducted in 
which session (4), playlist generator  (2), and context-of-use (2) 
were treated as within-subject independent variables. Coverage 
was dependent variable. A main effect for playlist generator was 
found to be significant (F(1,19) = 63.171, p < 0.001). More 
distinct and preferred songs were present in successive PATS 
playlists than in successive randomly assembled playlists (mean 
coverage at fourth session: 22.0 (PATS), 17.3 (random)). A main 
effect for context-of-use was found to be significant (F(1,19) = 
13.523, p < 0.005). It appeared that playlists for the ‘soft music’ 
context-of-use contained more distinct and preferred songs (mean 
coverage at fourth session: 21.8 (soft music), 17.5 (lively music)). 
A main effect for session was found to be significant (F(3,17) = 
284.326, p < 0.001). More particularly, the coverage curves for all 
conditions showed a significantly linear course over sessions 
(F(1,19) = 852.268, p < 0.001). Also, an interaction effect for 
playlist generator by session was found to be significant (F(3,17) 
= 7.602, p < 0.005). Successive playlists compiled by PATS 
contained more varied preferred songs than randomly assembled 
playlists. Likewise, the slopes of the coverage curves for PATS 
playlists appeared to be significantly higher than for randomly 
assembled playlists (coverage slope: 5.2 (PATS), 4.3 (random)). 
For each new playlist, PATS added five preferred songs that were 

not already contained in earlier playlists. For comparison, the 
random approach added four songs. No other effects were found 
to be significant. 

3.4.3 Rating score 
The results for the rating score are shown in Figure 5. 

Figure 5. Mean rating score (and standard error) of the 
playlists in different contexts-of-use. The left-hand panel (a) 
shows mean rating for both playlist generators (PATS and 
random) in the ‘soft music’ context-of-use. The right-hand 

panel (b) shows mean rating score for both generators in the 
‘lively music’ context-of-use.  

A MANOVA analysis was conducted in which playlist generator 
(2), context-of-use (2), and session (4) were treated as within-
subject independent variables. Rating score was dependent 
variable. A significant main effect for playlist generator was 
found (F(1,19) = 85.085, p < 0.001). Playlists compiled by PATS 
were rated higher than randomly assembled playlists (mean rating 
score: 7.3 (PATS), 5.3 (random)). In normative terms, PATS 
playlists can be characterized as ‘more than fair’ and randomly 
assembled playlists as ’almost sufficient’. A significant main 
effect for context-of-use was found (F(1,19) = 12.574, p < 0.005). 
Playlists for the ‘soft music’ context-of-use were rated higher 
(mean rating score: 6.6 (soft music), 6.1 (lively music)). No other 
significant effects were found. 

3.4.4 Interview 
The post-experiment interview yielded relevant supplementary 
findings about the perceived usefulness of automatic music 
compilation. Of the 20 participants, twelve participants (60%) told 
that they would appreciate and use an automatic playlist generator; 
they commented that it would easily acquaint them with varying 
music styles and artists and would be a means to adequately cover 
their personal music collection. Two participants explained their 
appraisal by referring to easy searching in an ever-increasing 
number of songs. The other eight participants rejected the 
usefulness of such a system. Their main objection was a loss of 
control in music selection, though one of these participants found 
automatic playlist generation relevant for cafe’s and department 
stores. 

3.5 Discussion 
A user experiment examined the quality of PATS-generated 
playlists and randomly assembled playlists. PATS playlists 
appeared to contain more preferred songs and were rated higher 
than randomly assembled playlists in both contexts-of-use (see 
Hypothesis 1). In addition, PATS playlists appeared to contain 
more preferred songs that were not already contained in previous 
playlists than randomly assembled playlists (see Hypothesis 2). 
For each new playlist, PATS found five preferred songs that were 
not already contained in earlier playlists. There were no 
indications that PATS would deteriorate in finding new preferred 
music for future playlists. 

151



PATS: Realization and User Evaluation of an Automatic Playlist Generator
Steffen Pauws and Berry Eggen

Direct Listening Tests
results

PATS: Realization and User Evaluation of an Automatic Playlist Generator 

was dependent variable. A main effect for playlist generator was 
found to be significant (F(1,19) = 89.766, p < 0.0001). Playlists 
compiled by PATS contained more preferred songs than randomly 
assembled playlists (mean precision: 0.69 (PATS), 0.45 
(random)). A main effect for context-of-use was found to be 
significant (F(1,19) = 13.842, p < 0.005). Playlists for the ‘soft 
music’ context-of-use contained more preferred songs (mean 
precision: 0.63 (soft music), 0.51 (lively music)). An interaction 
effect for playlist generator by session was just not significant 
(F(3,17) = 2.675, p = 0.08), whereas, in the univariate test, it was 
found to be significant (F(3,57) = 2.835, p < 0.05). Further 
analysis of this interaction effect revealed a significant difference 
in mean precision between the fourth PATS playlist and mean 
precision of preceding PATS playlists in contrast to randomly 
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context-of-use contained more distinct and preferred songs (mean 
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For each new playlist, PATS added five preferred songs that were 

not already contained in earlier playlists. For comparison, the 
random approach added four songs. No other effects were found 
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3.4.3 Rating score 
The results for the rating score are shown in Figure 5. 
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assembled playlists as ’almost sufficient’. A significant main 
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Playlists for the ‘soft music’ context-of-use were rated higher 
(mean rating score: 6.6 (soft music), 6.1 (lively music)). No other 
significant effects were found. 

3.4.4 Interview 
The post-experiment interview yielded relevant supplementary 
findings about the perceived usefulness of automatic music 
compilation. Of the 20 participants, twelve participants (60%) told 
that they would appreciate and use an automatic playlist generator; 
they commented that it would easily acquaint them with varying 
music styles and artists and would be a means to adequately cover 
their personal music collection. Two participants explained their 
appraisal by referring to easy searching in an ever-increasing 
number of songs. The other eight participants rejected the 
usefulness of such a system. Their main objection was a loss of 
control in music selection, though one of these participants found 
automatic playlist generation relevant for cafe’s and department 
stores. 

3.5 Discussion 
A user experiment examined the quality of PATS-generated 
playlists and randomly assembled playlists. PATS playlists 
appeared to contain more preferred songs and were rated higher 
than randomly assembled playlists in both contexts-of-use (see 
Hypothesis 1). In addition, PATS playlists appeared to contain 
more preferred songs that were not already contained in previous 
playlists than randomly assembled playlists (see Hypothesis 2). 
For each new playlist, PATS found five preferred songs that were 
not already contained in earlier playlists. There were no 
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Skip-Based Listening Tests
basics

• Evaluation integrated into system

• Assumptions:

1. a seed song is given

2. a skip button is available and easily 
accessible to the user

3. a lazy user who is willing to sacrifice 
quality for time

Dynamic Playlist Generation Based on Skipping Behavior
Elias Pampalk and T. Pohle and G. Widmer 153

1. The user wants to listen to songs that are 
similar to the seed song

2. Same as (1) but with a dislike of an arbitrary 
artist for a subjective reason (eg taste)

3. The user’s preference changes over time.  
Specifically, in a 20 song playlist, the first 5 
songs from genre A, the middle 10 from either 
genre A or B, last 5 songs from genre B.

Dynamic Playlist Generation Based on Skipping Behavior
Elias Pampalk and T. Pohle and G. Widmer

Skip-Based Listening Tests
use cases
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skips in UC1

mendations from song sets was proposed in [10].
(D) For each candidate song, let da be the distance

to the nearest accepted, and let ds be the distance to the
nearest skipped. If da < ds, then add the candidate to
the set S. From S play the song with smallest da. If S
is empty, then play the candidate song which has the best
(i.e. the lowest) da/ds ratio.

3 EVALUATION
In the hypothetical use cases we assume that the user
wants to listen to one hour of music which is approxi-
mately 20 songs. The number of skips are counted until
these 20 songs are played. The use cases (UC) are the
following:

(1) The user wants to listen to songs similar to the
seed. We measure this by equating similarity with genre
membership. Any song outside of the seed’s genre is
skipped.

(2) The user wants to listen to similar music but dis-
likes a particular artist (for not measurable reasons such as
personal taste). To measure this we use the same approach
as for UC-1. An unwanted artist from the seed’s genre (not
the artist of the seed song) is randomly selected. Every
time a song outside the seed’s genre or from the unwanted
artist is played, skip is pressed.

(3) The user’s preferences change over time. We mea-
sure this as follows. Let A be the genre of the seed song
and B a related genre which the user starts to prefer. The
first 5 songs are accepted if they are from genre A. The
next 10 are accepted if they are from either A or B. The
last 5 are accepted if they are from B. We manually se-
lected pairs of genres for this use case. The list of pairs
can be found in Table 3. Unlike UC-1 and UC-2 it is pos-
sible that in UC-3 a state is reached where none of the
candidate songs would be accepted although the number
of accepted is less than 20. In such cases the remaining
songs in the collection are added to the skip count.

For UC-1 and UC-2 the evaluation is run using every
song in the collection as seed. For UC-3 every song in
genre A is used.

One of the biggest problems for our evaluation is that
we do not have enough artists per genre to implement an
artist filter. That is, we do not avoid playing several songs
from the same artist right after each other.

Another issue is that we assume only songs the user
dislikes are skipped. However, if a song is skipped be-
cause, e.g., the user just heard it on the radio (but likes
it otherwise) our heuristics will be mislead. To evaluate
this we could have included randomly pressed skips. To
solve this the user could be given more feedback options.
For example, how long or hard the skip button is pressed
could indicate how dissimilar the next song should be.

3.1 Data
The collection we use contains 2522 tracks from 22
genres (see Table 1 for further statistics). The genres
and the number of tracks per genre are listed in Fig. 2.
The collection has mainly been organized according to
genre/artist/album. Thus, all pieces of an artist are as-
signed to the same genre, which is questionable but com-
mon practice. The genres are user defined and inconsis-

Artists/Genre Tracks/Genre
Genres Artists Tracks Min Max Min Max
22 103 2522 3 6 45 259

Table 1: Statistics of the music collection.

Heuristic Min Median Mean Max
UC-1 A 0 37.0 133.0 2053

B 0 30.0 164.4 2152
C 0 14.0 91.0 1298
D 0 11.0 23.9 425

UC-2 A 0 52.0 174.0 2230
B 0 36.0 241.1 2502
C 0 17.0 116.9 1661
D 0 15.0 32.9 453

Table 2: Number of skips for UC-1 and UC-2.
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Figure 1: Skips per playlist position for UC-1.

tent. In particular, there are two different definitions of
trance. Furthermore, there are overlaps, for example, jazz
and jazz guitar, heavy metal and death metal etc.

3.2 Results
For UC-1 using random shuffle to generate the playlist
would require more than 300 skips in half of the cases
while heuristic A requires less than 37 skips in half of the
cases. Table 2 shows the results for UC-1 and UC-2. The
main observation is that the performance increases from
heuristic A to D. In general, there are a lot of outliers
which is reflected in the large difference between mean
and median. In a few cases almost all songs from the col-
lection are proposed until 20 songs from the seed genre
are in the playlist. Heuristic D has significantly fewer out-
liers. Half of all cases for heuristic D in UC-1 require less
than 11 skips which might almost be acceptable.

Fig. 1 shows that for D/UC-1 there is a large number of
skips after the first song (seed song). Once the system has
a few positive examples the number of skips decreases.
On the other hand, for heuristic A, the number of skips
gradually increases with the playlist position. (Note that
one must be careful when interpreting the mean because it
is strongly influenced by a few outliers.)

Fig. 2 shows that for D/UC-1 some genres work very
well (e.g. jazz guitar or heavy metal - trash), while others
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this we could have included randomly pressed skips. To
solve this the user could be given more feedback options.
For example, how long or hard the skip button is pressed
could indicate how dissimilar the next song should be.

3.1 Data
The collection we use contains 2522 tracks from 22
genres (see Table 1 for further statistics). The genres
and the number of tracks per genre are listed in Fig. 2.
The collection has mainly been organized according to
genre/artist/album. Thus, all pieces of an artist are as-
signed to the same genre, which is questionable but com-
mon practice. The genres are user defined and inconsis-

Artists/Genre Tracks/Genre
Genres Artists Tracks Min Max Min Max
22 103 2522 3 6 45 259

Table 1: Statistics of the music collection.

Heuristic Min Median Mean Max
UC-1 A 0 37.0 133.0 2053

B 0 30.0 164.4 2152
C 0 14.0 91.0 1298
D 0 11.0 23.9 425

UC-2 A 0 52.0 174.0 2230
B 0 36.0 241.1 2502
C 0 17.0 116.9 1661
D 0 15.0 32.9 453

Table 2: Number of skips for UC-1 and UC-2.
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Figure 1: Skips per playlist position for UC-1.

tent. In particular, there are two different definitions of
trance. Furthermore, there are overlaps, for example, jazz
and jazz guitar, heavy metal and death metal etc.

3.2 Results
For UC-1 using random shuffle to generate the playlist
would require more than 300 skips in half of the cases
while heuristic A requires less than 37 skips in half of the
cases. Table 2 shows the results for UC-1 and UC-2. The
main observation is that the performance increases from
heuristic A to D. In general, there are a lot of outliers
which is reflected in the large difference between mean
and median. In a few cases almost all songs from the col-
lection are proposed until 20 songs from the seed genre
are in the playlist. Heuristic D has significantly fewer out-
liers. Half of all cases for heuristic D in UC-1 require less
than 11 skips which might almost be acceptable.

Fig. 1 shows that for D/UC-1 there is a large number of
skips after the first song (seed song). Once the system has
a few positive examples the number of skips decreases.
On the other hand, for heuristic A, the number of skips
gradually increases with the playlist position. (Note that
one must be careful when interpreting the mean because it
is strongly influenced by a few outliers.)

Fig. 2 shows that for D/UC-1 some genres work very
well (e.g. jazz guitar or heavy metal - trash), while others
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Skip-Based Listening Tests
UC3 skips

Heuristic A Heuristic B Heuristic C Heuristic D
Start Goto Median Mean Median Mean Median Mean Median Mean
Euro-Dance Trance 69.0 171.4 36.0 64.9 41.0 69.0 20.0 28.3
Trance Euro-Dance 66.0 149.1 24.0 79.1 6.5 44.4 4.5 8.8
German Hip Hop Hard Core Rap 33.0 61.9 32.0 45.6 31.0 40.7 23.0 28.1
Hard Core Rap German Hip Hop 21.5 32.2 18.0 51.9 16.0 24.2 14.0 16.1
Heavy Metal/Thrash Death Metal 98.5 146.4 54.0 92.5 58.0 61.1 28.0 28.4
Death Metal Heavy Metal/Thrash 14.0 69.2 16.0 53.7 3.0 55.5 3.0 25.7
Bossa Nova Jazz Guitar 68.5 228.1 32.0 118.7 54.0 61.1 22.0 21.3
Jazz Guitar Bossa Nova 21.0 26.7 22.0 21.5 9.0 10.5 6.0 6.2
Jazz Guitar Jazz 116.0 111.3 53.0 75.7 45.0 74.0 18.5 27.3
Jazz Jazz Guitar 512.5 717.0 1286.0 1279.5 311.0 310.8 29.0 41.3
A Cappella Death Metal 1235.0 1230.5 1523.0 1509.9 684.0 676.5 271.0 297
Death Metal A Cappella 1688.0 1647.2 1696.0 1653.9 1186.0 1187.3 350.0 309.2

Table 3: Number of skips for UC-3.

fail (e.g. electronic or downtempo). However, some of the
failures make sense. For example, before 20 pieces from
electronic are played, in average almost 18 pieces from
downtempo are proposed.

Table 3 gives the results for UC-3. As for the other
use cases the performance increases from A to D in most
cases. We have included the pair a capella to death metal
as an extreme to show the limitations (we do not consider
such a transition to be a likely user scenario). In three of
the cases for heuristic D the median seems to be accept-
ably low.

The number of skips depends a lot on the direction of
the transition. For example, moving from jazz guitar to
bossa nova requires, in half of the cases, less than 6 skips.
Moving in the other direction requires almost 3 times as
many skips. This is also reflected in Fig. 2. Specifically,
jazz guitar to bossa nova works well because jazz guitar
is mainly confused with bossa nova. On the other hand
bossa nova is confused with many other genres. The same
can be observed, e.g., for the pair trance and euro-dance.

Fig. 3 shows where skips occur for UC-3 and heuristic
D, and how often each genre was played per playlist po-
sition. In some cases during the transition phase (where
genre A or B are accepted) basically only genre A is
played. When the transition is forced (after the 15th song
in the playlist) the number of skips drastically increases.
In other cases the transition works very nicely. An obvious
direction for further improvement is to include a memory
effect to allow the system to quickly forget previous user
choices. However, preliminary experiments we conducted
in this direction did not show significant improvements.

4 CONCLUSIONS
We have presented an approach to dynamically create
playlists based on the user’s skipping behavior. We evalu-
ated the approach using hypothetical use cases for which
we assume specific behavior patterns. Compared to the
approach suggested in [5], heuristic D reduces the num-
ber of skips drastically. In some of the cases the necessary
number of skips seems low enough for a real world appli-
cation.

The main limitation of our evaluation is that we did not
implement an artist filter (to avoid having a large number
of pieces from the same artist right after each other in a

playlist) due to the small number of artist per genre.
The heuristic depends most of all on the similarity

measure. Any improvements would lead to fewer skips.
However, implementing memory effects (to forget past
decisions of the user) or allowing the similarity measure to
adapt to the user’s behavior are also interesting directions.
For use cases related to changing user preferences a key
issue might be to track the direction of this change. Incor-
porating additional information such as web-based artist
similarity or modeling the user’s context more accurately
(based on data from long term usage) are other options.

Although evaluations based on hypothetical use cases
seems to be sufficient for the current development state,
experiments with humans listeners will be necessary in
the long run.
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• Last.fm Radio logs are used to analyze and 
evaluate several heuristics for dynamic playlists

• This is done through the treatment of playlists as 
fuzzy sets

• Work shows that one heuristic work best given 
inconsistent rejects while another performs 
best given inconsistent accepts and third 
performs equally in either environment.
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Figure 6. Two-dimensional histograms that illustrate how the 9 generated datasets gradually move from a high level of
inconsistent accepts to a high level of inconsistent rejects.
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Figure 7. Results of the additional evaluations for H
I
a (- -), Hb (–), and H

I
c (-·-). The numbers along the horizontal axis

are dataset identifiers, while the vertical axis shows failure rate percentages.

results described in [8], H
ISL
a and H

ISL
c perform at least

as well as all other instances of H
I
a and H

I
c , respectively.

7. CONCLUSION AND FUTURE WORK

The mathematical apparatus from the theory of fuzzy sets
proves to be very convenient for defining dynamic playlist
generation heuristics. Using the described fuzzy frame-
work, we obtained definitions that are not only systematic
and both concise and precise, but also intuitively clear and
easy to analyse. We relied on this latter benefit to relate the
performance of the considered heuristics to inconsistent
user preferences. More precisely, we established that H

I
a

performs best when inconsistent rejects occur more fre-
quently than inconsistent accepts, that H

I
c can be expected

to perform best when inconsistent accepts are more com-
mon, and that H

I
b performs similarly under both circum-

stances. We clearly confirmed these theoretical insights by
means of a new methodology for evaluating playlist gener-
ation heuristics based on listening patterns extracted from
radio logs, which allowed us to conduct accurate experi-
ments using massive amounts of data.

Since we mainly focussed on comparing the heuristics
with each other in this paper, it still remains largely un-
clear to what extent they can improve the performance of a
particular playlist generation system. Future work should
try to measure the performance impact of the considered
heuristics on specific playlist generations systems, and com-
pare them with potential alternatives. In order to obtain a
fairer comparison, the underlying fuzzy relation M could
then be based on a more advanced similarity measure than
simple tag-based cosine similarity.
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Figure 8. Categorization of certain bins from the coarse-
grained two-dimensional histograms.
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objective analysis

Measuring Distance

We can measure the distance between 
sequences of tracks using the same 

methods we use to measure the distance 
between frames within tracks.

Using Song Social Tags and Topic Models to Describe and Compare Playlists
Ben Fields, Christophe Rhodes and Mark d'Inverno 162



Measuring Distance

• Topic Modeled Tag Clouds used as a song-
level feature

• Sequences of these low dimensional 
features can then be examined

• The fitness of this pseudo-metric space is 
examined through patterns in radio playlist 
logs

Using Song Social Tags and Topic Models to Describe and Compare Playlists
Ben Fields, Christophe Rhodes and Mark d'Inverno 163

Measuring Distance

Using Song Social Tags and Topic Models to Describe and Compare Playlists
Ben Fields, Christophe Rhodes and Mark d'Inverno

gather tags for all songs

create LDA model describing 
topic distributions

infer topic mixtures for all 
songs

create vector database 
of playlists
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Measuring Distance

Using Song Social Tags and Topic Models to Describe and Compare Playlists
Ben Fields, Christophe Rhodes and Mark d'Inverno 164

An evaluation of 
various playlisting 

services

Objective Evaluation

166

Some playlist stats

Playlist statsPlaylist statsPlaylist statsPlaylist statsPlaylist stats

Source Radio Paradise Musicmobs
art of the 

mix
Pandora

Playlists 45,283 1,736 29,164 94

Unique Artists 1,971 19,113 48,169 556

Unique Tracks 6,325 93,931 218,261 908

Average Length 4.3 100 20 11

% with duplicate 
artist

0.3% 79% 49% 48%

% with 
consecutive artists

0.3% 60% 20% 5%

Pandora playlist stats based on listening on 44 separate ‘stations’
167



Objective evaluation
Tag diversity

Tag Diversity: unique artist tags vs. total artist tags 

Playlist Tag Diversity Playlist Tag Diversity Playlist Tag Diversity 

Source Tag Diversity Random

MusicMobs 0.29 / 0.18 0.51 / 0.13

Pandora 0.44 / 0.20 0.64 / 0.19

Art of the mix 0.48 / 0.17 0.61 / 0.11

Radio Paradise 0.75 / 0.13 0.75 / 0.13

168

Radio Paradise diversity examples

Low Diversity PlaylistsLow Diversity PlaylistsLow Diversity Playlists

Artist Track Tags

Sun Volt Live Free Alt-country, americana, rock, country, folk, indie

Sun Kil Moon Gentle Moon indie, folk, singer-songwriter, americana, Alt-
country, alternative

ANi DiFranco Angry Any More folk, singer-songwriter, female vocalists, indie, 
alternative, rock

Jim White
Handcuffed to a fence in 

Mississippi
Alt-country, singer-songwriter, americana, folk, 
indie, country

Jess Klein Soda Water folk, female vocalists, singer-songwriter, indie, 
acoustic, girls with guitars

Diversity:  0.367
11 unique tags out of 30
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Radio Paradise diversity examples

High Diversity PlaylistsHigh Diversity PlaylistsHigh Diversity Playlists

Artist Track Tags

Big Head Todd & 
The Monsters

It’s Alright rock, alternative, jam band, prog rock, Jam, 90s

Joni Mitchell Be Cool folk, singer-songwriter, female vocalists, Canadian, 
classic rock, acoustic

Chet Baker Tangerine jazz, trumpet, cool jazz, blues, jazz vocals, easy 
listening

Diversity:  1.0
18 unique tags out of 18
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Pandora diversity examples

Low Diversity PlaylistsLow Diversity PlaylistsLow Diversity Playlists

Artist Track Tags
Project 

Pitchfork
Timekiller industrial, ebm, electronic, darkwave, Gothic, 

synthpop,

Covenant We stand alone melodic black metal, black metal, synthpop, metal, 
industrial, futurepop

Icon of Coil Faith? Not Important ebm, industrial, futurepop, electronic, synthpop, 
darkwave

Neuroticfish Waving Hands ebm, futurepop, industrial, synthpop, electronic, 
goth

Project 
Pitchfork

Momentum industrial, ebm, electronic, darkwave, Gothic, 
synthpop

Covenant Stalker melodic black metal, black metal, synthpop, metal, 
industrial, futurepop

Diversity:  0.305
11 unique tags out of 36

Project Pitchfork Radio
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Pandora diversity examples

High Diversity PlaylistsHigh Diversity PlaylistsHigh Diversity Playlists

Artist Track Tags

Metallica The Call of Ktulu metal, thrash metal, heavy metal, rock, hard rock,, 
metallica

Linkin Park Pushing Me Away rock, Nu Metal, alternative, metal, Linkin Park, punk

Creed One Last Breath rock, alternative, hard rock, Grunge, metal, punk

Diversity:  0.611
11 unique tags out of 18

Evanescence Radio
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Musicmobs diversity examples

Low Diversity PlaylistsLow Diversity PlaylistsLow Diversity Playlists

Artist Track Tags

Perfect Circle (54 Tracks) rock, alternative, Progressive rock, metal, hard 
rock, industrial

Tool (43 Tracks) Progressive metal, Progressive rock, metal, rock, 
alternative, Progressive

Diversity:  0.014
8 unique tags out of 582
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Playlist Cohesion Metric
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• Goal - find level of cohesion 
in an ordered sequence such 
as a playlist

• How:

• Represent the item space 
as a connected graph

• Find the shortest weighted 
path that connects the 
ordered sequence

• Average step length is the 
cohesion index
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Playlist Cohesion Metric
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• Consider [A, E, U, X]

• Distance: [3,7,6] = 16

• Average Distance: 5.33

175

Playlist Cohesion Metric
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• Consider [Z,L, H, X]

• Distance: [15 , 10 , 9] = 34

• Average Distance: 11.3
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Building the graph
MusicBrainz Artist Relations

• Nodes are artists

• Edges are relations, weighted by significance

• 132 Relationship types.  some examples:

Edge type Weight
Is Person 1

Member of band 10
Married 20

Performed with 100
Composed 250
Remixed 500

Edited Liner Notes 1000
177

MusicBrainz Artist Relations GraphMusicBrainz Artist Relations Graph

Source
Average inter-song 

Distance

Radio Paradise 0.08 / 0.06

Pandora 0.11 / 0.12 

MusicMobs 0.13 / 0.10 

Art of the mix  0.14 / 0.10

Random (RP) 0.27 / 0.22

Random (graph) 0.39 / 0.45

Random (AotM) 0.56 / 0.19
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Building the graph
Echo Nest  Artist Similarity

• Nodes are artists

• Edges are similar artists, weighted by similarity
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Echo Nest Artist Similarity GraphEcho Nest Artist Similarity Graph

Source
Average inter-song 

Distance

Pandora 1.57 / 1.4 

Radio Paradise 2.27 / 1.0 

MusicMobs 2.71 / 1.7

Art of the mix 3.02 / 1.4

Random (RP) 4.02 / 1.2

Random (AotM) 7.00 / 1.1

Random (graph) 7.89 / 1.78
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The future of playlisting
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Hybrid Radio
The Social Radio

• produce playlists via weighted distance 
paths

• next destination song is determined via a 
vote across all listeners

• candidate songs selected from disparate 
communities
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Hybrid Radio
Ratings

• ratings are applied to the edge that lead to 
the song

• song ratings -> playlist ratings
• serving 2 purposes
• direct evaluation of playlists
• object based filtering

Hybrid Radio



Convergence

When the cloud provide all the music and 
ubiquitous internet provides it all the time 

recommendation and playlisting merge

186

Convergence

The celestial jukebox needs a DJ.
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The anonymous programmers who write the 
algorithms that control the series of songs in these 
streaming services may end up having a huge 
effect on the way that people think of musical 
narrative—what follows what, and who sounds best 
with whom. Sometimes we will be the d.j.s, and 
sometimes the machines will be, and we may be 
surprised by which we prefer

You, the D.J.
Online music moves to the cloud.
by Sasha Frere-Jones

The New Yorker, June 14, 2010 188


