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Overview

Part I: Pitch and Harmony
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Fourier Transform

Frequency (Hz)

Fourier Transform

Signal f:R—> R

Fourier representation  f(t) = [ coe”™dw , ¢,
w€ER

Fourier transform fw) = [ ft)e ™ tat
teR

= f(w)

Fourier Transform

Signal f:R—R

Fourier representation  f(t) = [ c.e’™"dw , c, = f(w)
weR

Fourier transform fw) = [ f(tye ™ *dt
tER

= Tells which frequencies occur, but does not tell when the
frequencies occur

= Frequency information is averaged over the entire time
interval

= Time information is hidden in the phase

Fourier Transform
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Short Time Fourier Transform
Idea (Dennis Gabor, 1946):

= Consider only a small section of the signal
for the spectral analysis

— recovery of time information
= Short Time Fourier Transform (STFT)

= Section is determined by pointwise multiplication
of the signal with a localizing window function

Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
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Short Time Fourier Transform
Definition

= Signal f:R—R

(g€ L*(R) gl =1)

= Window function g : R — R

- STFT  f(w.t): /f glu—t)e™ " du = (flgo.)

with Guoilu) =™ gy —t), ucR

Short Time Fourier Transform
Intuition:

= gu,t is “sound event” of frequency w , which
oscillates within the translated window v — g(u — t)

A NN

Short Time Fourier Transform
Intuition:

= Jw,t is sound event” of frequency w , which
oscillates within the translated window © — g(u — ¢)

(I NN

= Inner product (flg.,:) measures the correlation
between the sound event g..: andthe signal f

Window Function

Box window
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Window Function

Triangle window
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Window Function

Hann window
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Time-Frequency Representation
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Time-Frequency Representation

Chirp signal and STFT with Hann window of length 0.05

1

AT >
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0 0.1 0.2 03 0.4 5 0.6 0.7 0.8 09 1

Frequency ®

Time-Frequency Localization

= Size of window constitutes a trade-off between time

resolution and frequency resolution:

Large window :

Small window :

Heisenberg Uncertainty Principle: there is no
window function that localizes in time and
frequency with arbitrary precision.

poor time resolution
good frequency resolution
good time resolution
poor frequency resolution

Short Time Fourier Transform

Signal and STFT with Hann window of length 0.02

Short Time Fourier Transform

Signal and STFT with Hann window of length 0.1
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Short Time Fourier Transform Short Time Fourier Transform
Note: Playing a single note on an instrument may result in Example: Piano

a complex superposition of different frequencies.

Pitch and frequency are two different concepts! >
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Short Time Fourier Transform

Example: Trumpet

Short Time Fourier Transform

Example: Flute
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Short Time Fourier Transform Pitch Features
Example: Violine
»
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Model assumption: Equal-tempered scale

= MIDI pitches: p € [1:128]

= Piano notes: p=21(A0) to p=108 (C8)
= Concert pitch: p =069 (Ad) = 4_0 Hz

= Center frequency: fuipi(p) =27 - 440 Hz

Pitch Features

5163

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3
36 38 40 41 43 45 47 48 50 52 53 55 57

A2 A3
110 Hz 220 Hz

Logarithmic frequency distribution
Octave: doubling of frequency

G3 A3 B3 C4 D4 B4 F4 G4 A4 B4
59 60 62 64 65

67 69 T1
A4
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Pitch Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
CF2 D¥2 T#2 G2 Af2 C#3 D3 F#3 GF3 A%3 C#4 D4 Fi4 G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 4% 50 52 53 B5 5T 59 60 62 64 6h 67 69 TI

Idea: Binning of Fourier coefficients

Divide up the fequency axis into
logarithmically spaced ,pitch regions*

and combine spectral coefficients of each
region to form a single pitch coefficient.

Pitch Features

Time-frequency representation

—

Windowing in the time domain
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Pitch Features

Pitch Features

Example: Friedrich Burgmdller, Op. 100, No. 2 > = ===
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o . ) Spectrogram
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Spectrogram Pitch representation
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Pitch Features

Pitch Features

iF EEE===t=== > Example: Chromatic Scale >
; ‘ Spectrogram
Pitch representation ~
Cc8 108 5 15
102 0 o
o7 . @ -
o 2 o 2 o
s s 2 . =
c5 " - B
c4 25
Time 2(seconds) : 7 =
Time (seconds)
Pitch Features Chroma Features
Example: Chromatic Scale > = Pitches are perceived as related (harmonically similar)
' . if they differ by an octave
Pitch representation = |dea: through away information which is difficult to
. estimate and not so important for harmonic analysis
\ = Separation of pitch into two components:
= tone height (octave number) and chroma
S ’ < = Chroma: 12 traditional pitch classes of the equal-
= "2 tempered scale. For example:
= £

Time (seconds)

ChromaC ={..., Co, C1, C2, C3, ...}
= Computation: pitch features - chroma features

Add up all pitches belonging to the same class
= Result: 12-dimensional chroma vector

Chroma Features
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C2 D2 E2 F2
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Chroma Features
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Chroma C




Chroma Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
CF2 D¥2 Fi2 GP2 AF2 C#3 D3 F#3 GF3 A%3 Ci4 Di4 Fi4 G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
3 7 709 T

30 38 40 41 13 45 47 4% B0 B2 hi HH 5T 59 60 62 64 b 67
C*2 C*3 C*4
Chroma C*

Chroma Features

-
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Ci2 DF2 Fi2 G2 A%2 C#3 D3 Fi3 GP3 Af3 Ci4 D4 Fi4 G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 Fi4 G4 A4 B4
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Chroma Features

Chromatic circle Shepard's helix of pitch perception

Az,
)

(@]
~

S

&

o 0
Tone %

I
I

http:/en.wikipedia.org/wiki/Pitch_class_space

[Gémez, PhD 2006][Bartsch/Wakefield, IEEE-TMM 2005]

Chroma Features

= Sequence of chroma vectors correlates to the
harmonic progression

- v . .
= Normalization v — — makes features invariant to

ol

changes in dynamics
= Further quantization and smoothing

= Taking logarithm before adding up pitch coefficients
accounts for logarithmic sensation of intensity

Chroma Features

Example: C-Major Scale  »

Chroma Features

Example: Chromatic Scale >

Pitch representation

108

I

MIDI pitch
Intensity (dB)

Time (seconds)




Chroma Features

Chroma Features

Example: Chromatic Scale > Example: Chromatic Scale >
Chroma representation > Chroma representation (normalized) >
o | |
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Chroma Features Chroma Features
Example: Friedrich Burgmller, Op. 100, No. 2 Example: Friedrich Burgmller, Op. 100, No. 2
> >
Pitch representation Chroma representation
- 96 - . @
[3}) 90 ko) © o
s o 2 5 o 2
% 78 5 é 5 -15 é
540 1 2 3 4 %0 -30
Time (seconds) Time (seconds) >
Chroma Features Chroma Features
Example: Friedrich Burgmuiller, Op. 100, No. 2 Example: Beethoven's Fifth
Chroma representation
> Feature resolution: 10 Hz
Karajan > Scherbakov »
Chroma representation (normalized)
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Chroma Features

Example: Beethoven's Fifth
Chroma representation (normalized)

Feature resolution: 10 Hz

Karajan >
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Scherbakov »
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Chroma Features

Example: Beethoven's Fifth
Chroma representation (normalized)

Feature resolution: 2 Hz
Scherbakov »

Karajan | 2

0 5 10 15
Time (seconds)

o

10
Time (seconds)

15

Chroma Features

Example: Beethoven's Fifth
Chroma representation (normalized)
Feature resolution: 1 Hz

Karajan >
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0 5 10 15
Time (seconds)

Scherbakov »
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Chroma Features
Example: Zager & Evans “In The Year 2525”

> | > | | > > > > >

]

How to deal with transpositions?

[Goto, ICASSP 2003]

Chroma Features
Example: Zager & Evans “In The Year 2525”

Original: (2!, ... o™)

[Goto, ICASSP 2003]

Chroma Features
Example: Zager & Evans “In The Year 2525”

| 2 >
038 038
06 06
104 04
02 02
0 5 10 15

Shifted: (o (v1),. .., o (eM))
[Goto, ICASSP 2003]

Original: (o', ... vN)




Application: Chord Recognition

T L n e

[Ueada et al., ICASSP 2010][Sheh/Ellis, ISMIR 2003]

Application: Chord Recognition

I

[Ueada et al., ICASSP 2010][Sheh/Ellis, ISMIR 2003]

Application: Chord Recognition
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[Ueada et al., ICASSP 2010][Sheh/Ellis, ISMIR 2003]

Application: Music Synchronization

Grave.
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[Mdller, Springer-Monograph 2007]

Application: Music Synchronization
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[Mdller, Springer-Monograph 2007]

Application: Music Synchronization

System: Interpretation Switcher (Beethoven-Haus)

Interpretationsvergleich fzz,//L

@ (@ satzauswahl () Info




Application: Audio Structure Analysis

Given: CD recording

Goal: Automatic extraction of the repetitive structure
(or of the musical form)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

> > > > > > > >

A Ay By B C Az By B,

] 1

[Dannenberg/Hu, ISMIR 2002]

Application: Audio Structure Analysis

System: SmartMusicKiosk

[Goto, ICASSP 2003]

Application: Cover Song Identification

Goal: Given a music recording of a song or piece of music,
find all corresponding music recordings within a huge
collection that can be regarded as a kind of version,
interpretation, or cover song.

= Live versions
= Versions adapted to particular country/region/language

= Contemporary versions of an old song
Radically different interpretations of a musical piece

Instance of document-based retrieval!

[Ellis/Poliner, ICASSP 2007][Serra et al., IEEE-TASLP 2009]

Application: Cover Song Identification

Query: Bob Dylan — Knockin’ on Heaven’s Door »
Retrieval result:

Rank | Recording Score

1. Guns and Roses: Knockin’ On Heaven’s Door | 94.2 >
2. Avril Lavigne: Knockin® On Heaven’s Door 86.6

3. Wyclef Jean: Knockin* On Heaven’s Door 83.8

4. Bob Dylan: Not For You 65.4

5. Guns and Roses: Patience 61.8

6. Bob Dylan: Like A Rolling Stone 57.2

7.-14.

[Ellis/Poliner, ICASSP 2007][Serra et al., IEEE-TASLP 2009]

Application: Audio Matching

Given: Large music database containing several
recordings of the same piece of music
interpretations by various musicians
arrangements in different instrumentations

Goal: Given a short query audio clip, identify all
corresponding audio clips of similar musical content

irrespective of the specific interpretation and instrumentation
automatically and efficiently

Query-by-Example paradigm

[Mdiller et al., ISMIR 2005]

Application: Audio Matching

[ Audiomatching Plug-In

2
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Beethoven_op067_1_symphony_5_bernstein_22050_mono.wav 08:38.00
Lol

Beethoven_op067_1_symphony_5_karajan_22050_mono.wav 07:23.00
O

Beethoven_op067_1_symphony_5_sawallisch_22050_mono.wav 08:00.00
Liv:

Beethoven_op067_1_symphony_5_kegel_22050_mono.wav 07:42.00
Ll

I

[Kurth/Mller, IEEE-TASLP 2008]




Application: Audio Matching Conclusions (Chroma Features)
= Chroma features capture harmonic information

= High robustness to changes in timbre and
instrumentation

= Many chroma variants with different properties

= Various implementations publically available

Beethoven - The Complete 2iano Sonatas on Period Instruments - Bilsan
helique”

[Damm et al., ICMI 2008]

Chroma Toolbox

Chroma Toolbox: Pitch, Chroma, CENS, CRP

mp @5 "
mas planck nsi SAARLANDES universitatbonn|

Groma Toalbox
Feature description
MATLAB Code The Chroma Toolbox has been developed by Mielnard Ml and his collaborates fiom the research oraup headed by Michag| Clausen it contains

References MATL ‘e afnovel chioma-based audio features. The MATLAB implementations provided
Links onthis webste are fiee or use in nor-commercial tesearch projects worldwide.Ifyou publish results obtained using these implementations, please.
WP nformati cite the references below, 1], 12, 3], 4]

Bonn University

SHIR

Chioma-based audio features have tumed outto be  powerful 00! or various analysis tasks n Music Inormation Retreval Including task such as.
chord labeling, music summarization, structure analysis, music synchronization and audio alignment,A 12-dimensional chroma feature encodes the
shorttime energy distrioulion ofthe undelying music signals over bands, which tweive ses
ofthe equal-empered scale encaded by the atiioutes C,C#.D.D%,.,B. Suth features strongly correlate o the harmonic progression of he music

signal, often prorminent in n ifler by a musical octave, chrona features possess a signifcant

deree of obustness o changes in timbre and instrumentation

= Freely available Matlab toolbox
= Feature types: Pitch, Chroma, CENS, CRP
= http://www.mpi-inf.mpg.de/~mmueller/chromatoolbox/
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Part II: Tempo and Beat

Intr

Basi

oduction (Tempo and Beat)

c Task: Given a recording of a piece of music,
determine the periodic sequence of
beat positions.

Tapping the foot when listening to music.

H P

Introduction (Tempo and Beat)

Basic Task:  Given a recording of a piece of music,
determine the periodic sequence of
beat positions.

Tapping the foot when listening to music.

Introduction (Tempo and Beat)

Example 1: Queen — Another One Bites The Dust

Pu

Ise level: Quarter note

Tempo: 110 BPM >

Introduction (Tempo and Beat)

Example 1: Queen — Another One Bites The Dust
Pulse level: Eighth note

Tempo: 220 BPM >




Introduction (Tempo and Beat)

Example 2: Chopin — Mazurka Op. 68-3
Pulse level: Quarter note

Tempo: ?7? >

Introduction (Tempo and Beat)

Example 2: Chopin — Mazurka Op. 68-3
Pulse level: Quarter note

Tempo: 50-200 BPM >

Tempo curve

Lo
2 3 S
2 2 8

Tempo (BPM)

@
3

Time (beats)

Introduction (Tempo and Beat)

Example 2: Borodin — String Quartet No. 2
Pulse level: Quarter note

Tempo: 120-140 BPM (roughly) >

Introduction (Tempo and Beat)

Tasks

= Onset detection
= Beat tracking

= Tempo estimation

Introduction (Tempo and Beat)

Tasks Challenges

= Onset detection = Non-percussive music
= Beat tracking = Soft note onsets

= Tempo estimation = Time-varying tempo

Introduction (Tempo and Beat)

Tasks

= Onset detection
= Beat tracking
= Tempo estimation
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Introduction (Tempo and Beat)

Tasks

= Onset detection
= Beat tracking
= Tempo estimation

Introduction (Tempo and Beat)

Tasks

= Onset detection
= Beat tracking

= Tempo estimation

phase period

Introduction (Tempo and Beat)

Tasks

= Onset detection
= Beat tracking

= Tempo estimation Beats per minute (BPM)

Tempo := 60 / period

period

Overview (Tempo and Beat)

Tasks

= Onset detection

Onset Detection

= Finding perceptually relevant
impulses in a music signal

= Onset is the time position
where a note is played

= Onset typically goes along
with a change of the signal’s
properties:
energy or loudness
pitch or harmony
timbre

Onset Detection

= Finding perceptually relevant
impulses in a music signal

= Onset is the time position
where a note is played

alla\ck

= Onset typically goes along \\ \
with a change of the signal's onset | \\ ey
properties: N —

energy or loudness
pitch or harmony
timbre

lwwl transient

[Bello et al., IEEE-TASLP 2005]




Onset Detection (Energy-Based)
Steps

Waveform

Time (seconds)

Onset Detection (Energy-Based)

Steps
1. Amplitude squaring

Squared waveform

0.

Time (seconds)

Onset Detection (Energy-Based)

Steps
1. Amplitude squaring
2. Windowing

Energy envelope

05

Time (seconds)

Onset Detection (Energy-Based)

Steps

1. Amplitude squaring

2. Windowing

3. Differentiation Capturing energy changes

Differentiated energy envelope

04

wl | ' |
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0 1 2 3 4 5 6 7 8

Time (seconds)

Onset Detection (Energy-Based)

Steps

1. Amplitude squaring

2. Windowing

3. Differentiation Only energy increases are
4. Half wave rectification relevant for note onsets

Novelty curve

°l LLM;A u_m_b f mu Lo

04 L L L L L L
0 1 2 3 4 5 6 7 ]

Time (seconds)

Onset Detection (Energy-Based)

Steps

1. Amplitude squaring

2. Windowing

3. Differentiation Peak positions indicate
4. Half wave rectification note onset positions

5. Peak picking

ﬁLJJMAﬂLLMMi

04 L L L L L I
0

Time (seconds)




Onset Detection (Energy-Based) Onset Detection (Energy-Based)
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Energy envelope Energy envelope / note onsets positions
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Time (seconds) Time (seconds)
Onset Detection (Energy-Based) Onset Detection (Spectral-Based)
Magnitude spectrogram | X | Steps:

= Energy curves often only work for percussive music
= Many instruments such as strings have weak note onsets

= No energy increase may be observable in complex sound
mixtures

Frequency (Hz)

= More refined methods needed that capture
changes of spectral content
changes of pitch
changes of harmony 0

energy changes in certain
frequency ranges

o 2 a4 6 & 1
Time (seconds;

1. Spectrogram
025
0.2
0.5
o1 = Aspects concerning pitch,
harmony, or timbre are
captured by spectrogram
005 = Allows for detecting local
o 12
)

[Bello et al., IEEE-TASLP 2005]

Frequency (Hz)

Onset Detection (Spectral-Based) Onset Detection (Spectral-Based)

Compressed spectrogram Y Steps: Spectral difference Steps:
’ 1. Spectrogram

2. Logarithmic compression
1 Y =log(1+C-1X1)

04
1. Spectrogram
. e 2. Logarithmic compression
- fs 3. Differentiation
z 025
02
08 sensation of sound intensity o1 = First-order temporal
difference
= Enhancement of low-intensity 01 = Captures changes of the
spectral content
005 = Only positive intensity
, frequency spectrum . changes considered

= Accounts for the logarithmic
08 = Dynamic range compression
values
0 2 4 6 8 10 12

02 = Enhancement of high-
Time (seconds)

Frequency (Hz)

2 4 6 8 10 12
Time (seconds)




Frequency (Hz)

Onset Detection (Spectral-Based)
Steps:

Spectral difference

0.4
035
03
0.25
02
01
01
0.05
° 2 4 B 8 10 12
' 0
\ i

|

L | — Novelty curve

Spectrogram
Logarithmic compression
Differentiation
Accumulation

HODd =

Frame-wise accumulation of
all positive intensity changes
Encodes changes of the
spectral content

]
40]

Onset Detection (Spectral-Based)
Steps:
1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Novelty curve
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Onset Detection (Spectral-Based)

Steps:

1. Spectrogram
Logarithmic compression
Differentiation
Accumulation
Normalization

ok w0

Novelty curve
Substraction of local average

Onset Detection (Spectral-Based)

Steps:

1. Spectrogram
Logarithmic compression
Differentiation
Accumulation
Normalization

o koD

Normalized novelty curve
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Onset Detection (Spectral-Based)

Steps:
Spectrogram
Logarithmic compression
Differentiation
Accumulation
Normalization
Peak picking

ook Wb~

Normalized novelty curve
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Frequency (Hz)

Onset Detection (Spectral-Based)

Logarithmic compression is essential

1

10000 09 I X |
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4000 04
03

2000 0.2
01

Novelty curve

Groundtruth onsets

Ti d:
ime (seconds) [Klapuri et al., IEEE-TASLP 2006]




Onset Detection (Spectral-Based)

Logarithmic compression is essential

05

10000 Y= IOg(l +C-1X |)
8000 C=1

6000

4000

Frequency (Hz)

2000 0.1

9 0
2 4 8

Novelty curve

Groundtruth onsets

Tii d
ime (seconds) [Klapuri et al., IEEE-TASLP 2006]

Onset Detection (Spectral-Based)
Logarithmic compression is essential

Y =log(l+C-1X 1)
2 C=10

Frequency (Hz)

Novelty curve

Groundtruth onsets

Time (seconds)

[Klapuri et al., IEEE-TASLP 2006]

Onset Detection (Spectral-Based)

Logarithmic compression is essential

. Y=log1+C-1X 1)
C =1000

Frequency (Hz)

Novelty curve

Groundtruth onsets

Time (seconds)

[Klapuri et al., IEEE-TASLP 2006]

Onset Detection

Peak picking
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= Peaks of the novelty curve indicate note onset candidates

Onset Detection

Peak picking
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= Peaks of the novelty curve indicate note onset candidates
= In general many spurious peaks

= Usage of local thresholding techniques

= Peak-picking very fragile step in particular for soft onsets

Onset Detection

Shostakovich — 2nd Waltz >
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Overview (Tempo and Beat)

Tasks

= Beat tracking

= Tempo estimation

Beat and Tempo

What is a beat?

= Steady pulse that drives music [Parncutt 1994]
forward and provides the _ [Sethares 2007]
temporal framework of a piece
of music [Large/Palmer 2002]

. Sequence of perceived pu|ses [Lerdahl/ Jackendoff 1983]

that are equally spaced in time
= The pulse a human taps along
when listening to the music

[Fitch/ Rosenfeld 2007]

The term tempo then refers to the speed of the pulse.

Beat and Tempo

Strategy

= Analyze the novelty curve with
respect to reoccurring or quasi-
periodic patterns

= Avoid the explicit determination
of note onsets (no peak picking)

Beat and Tempo

Strategy

= Analyze the novelty curve with
respect to reoccurring or quasi-
periodic patterns

= Avoid the explicit determination
of note onsets (no peak picking)
[Scheirer, JASA 1998]
Methods [Ellis, JNMR 2007]
= Comb-filter methods
= Autocorrelation
= Fourier transfrom

[Davies/Plumbley, IEEE-TASLP 2007]
[Peeters, JASP 2007]
[Grosche/Miller, ISMIR 2009]

Tempogram

Definition: A tempogram is a time-tempo representation

that encodes the local tempo of a music signal

over time.

Tempo (BPM)

Time (seconds)

v

Intensity

Tempogram (Fourier)

Definition: A tempogram is a time-tempo represenation
that encodes the local tempo of a music signal
over time.

Fourier-based method

= Compute a spectrogram (STFT) of the novelty curve

= Convert frequency axis (given in Hertz) into
tempo axis (given in BPM)

= Magnitude spectrogram indicates local tempo




Tempogram (Fourier)

Tempogram (Fourier)
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B 7 Definition: A tempogram is a time-tempo represenation
e that encodes the local tempo of a music signal
s ° over time.
@ 4
& 2 Autocorrelation-based method
0 2 n 0 G0 o = Compare novelty curve with time-lagged
Windowed sinusoidal local sections of itself
15 ‘ ‘ ‘ > = Convert lag-axis (given in seconds) into

tempo axis (given in BPM)
= Autocorrelogram indicates local tempo




Tempogram (Autocorrelation)
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Compare novelty curve with time-lagged local sections

Tempogram (Autocorrelation)
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Tempogram (Autocorrelation)
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Tempogram (Autocorrelation)

Time lag of high value indicates high correlation
Autocorrelation reveals periodic self-similarities
Maximum for a lag of zero (no shift)

Windowed autocorrelation
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Tempogram (Autocorrelation)

= Time lag of high value indicates high correlation

= Autocorrelation reveals periodic self-similarities

= Maximum for a lag of zero (no shift)

= Convert time-lag axis (seconds) into tempo axis (BPM)

Windowed autocorrelation
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Tempogram (Autocorrelation)

Time lag of high value indicates high correlation
Autocorrelation reveals periodic self-similarities
Maximum for a lag of zero (no shift)

Convert time-lag axis (seconds) into tempo axis (BPM)
Convert into linear tempo axis

Windowed autocorrelation
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Tempogram (Autocorrelation)

= Time lag of high value indicates high correlation

= Autocorrelation reveals periodic self-similarities

= Maximum for a lag of zero (no shift)

= Convert time-lag axis (seconds) into tempo axis (BPM)
= Convert into linear tempo axis

Do this for a sliding window.

Every window defines a local section for which
a windowed autocorrelation is computed.

Tempogram (Autocorrelation)
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Novelty curve (local section)
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Tempogram (Autocorrelation)

Tempogram (Autocorrelation)
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Tempogram

Tempo (BPM)

0 5 10 15 20 25 30

10 15
Time (seconds)

Emphasis of tempo harmonics
(integer multiples)

Time (seconds)

Autocorrelation

Tempogram (Summary)

Fourier

Autocorrelation

Novelty curve is compared with
sinusoidal kernels each
representing a specific tempo

Novelty curve is compared with
time-lagged local (windowed)
sections of itself

Convert frequency (Hertz) into
tempo (BPM)

Convert time-lag (seconds) into
tempo (BPM)

Reveals novelty periodicities

Reveals novelty self-similarities

20 25 30

Time (seconds)

Emphasis of tempo subharmonics
(integer fractions)

[Peeters, JASP 2007][Grosche et al., ICASSP 2010]

Emphasizes harmonics Emphasizes subharmonics

Suitable to analyze tempo on
tatum and tactus level

Suitable to analyze tempo on
tatum and measure level

Overview (Tempo and Beat)

Tasks

Beat tracking

Beat Tracking

= Given the tempo, find the best sequence of beats

= Complex Fourier tempogram contains magnitude
and phase information

= The magnitude encodes how well the novelty curve
resonates with a sinusoidal kernel of a specific tempo

= The phase optimally aligns the sinusoidal kernel with
the peaks of the novelty curve

[Peeters, JASP 2007]

Beat Tracking

Tempo (BPM)
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[Grosche/Midiller, ISMIR 2009]

Beat Tracking
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Tempo (BPM)
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Beat Tracking Beat Tracking

600
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Beat Tracking Beat Tracking

Accumulation of kernels Accumulation of kernels
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[Grosche/Muiller, ISMIR 2009] [Grosche/Mtiller, ISMIR 2009]

Beat Tracking Beat Tracking

Novelty Curve
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Beat Tracking

Novelty Curve

= Indicates note onset candidates
= Extraction errors in particular for soft onsets

>
= Simple peak-picking problematic
Predominant Local Pulse (PLP)
= Periodicity enhancement of novelty curve

>

= Accumulation introduces error robustness
= Locality of kernels handles tempo variations

[Grosche/Midiller, ISMIR 2009]

Pulse Levels

Piano Etude Op. 100 No. 2 by Burgmdiller >

What is the pulse level: Measure — Tactus — Tatum?

[Klapuri et al., IEEE-TASLP 2006]

Pulse Levels
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Pulse Levels
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Evaluation

Brahms Hungarian Dance No. 5 >

Tempo (BPM)

Time (seconds)

Evaluation

Brahms Hungarian Dance No. 5 >

Tempo (BPM)

Evaluation
Beethoven Symphony No. 5
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Evaluation
Borodin — String Quartet No. 2

Tempo (BPM)
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Borodin — String Quartet No. 2
Borodin — String Quartet No. 2
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0035
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0028
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Tempo (BPM)

0.015
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0.005

v

O
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Conclusions (PLP)

Predominant local pulse (PLP)

Reveals pulse rate (tempo) and pulse positions
Periodicity enhancement of novelty curves

Suitable for non-percussive music with tempo variations

Combination with autocorrelation methods
[Peeters, JASP 2007]
[Jensen, JASP 2007]
[Mdller/Grosche, ICASSP 2010]
[Paulus/Klapuri, IEEE-TASLP 2009]

Tempo-based audio segmentation

Applications (Beat and Tempo)

= Feature design
(usage of beat-synchronous windows of adaptive size)

= Digital DJ / audio editing
(mixing and blending of audio material)

= Music classification
= Music recommendation

= Performance analysis
(extraction of tempo curves)

Application: Beat-Synchronous Features

frame chroma

OoOmMMOP>m OO0 mMNDD>D

tactus chroma

[Bello/Pickens, ISMIR 2005]

Application: Audio Editing (Digital DJ)

http://www.mixxx.org/




Application: Beat-Synchronous Light Effects
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Timbre Acoustic features underlying timbre

= Characterizes the identity of a sound source

= Perceptual attribute of sounds, separate from pitch,
loudness and duration

= Examples of sounds with the same pitch and root-mean-
square (RMS) levels, but different timbre:

< < & &

= In MIR, the term is usually stretched to refer to the
instrumentation aspects of a polyphonic signal

= Recent MIR PhD theses addressing timbre:
[Kitahara-PhD-07], [Eronen-PhD-10]

= Focus here: what is unique for music compared to speech

= Timbre is an inherently multidimensional concept

= Several underlying acoustic features of both spectral
and temporal types

= Schouten’s [1968] list of the five attributes of timbre:

its character ranging from “tonal" to “noiselike"
spectral envelope

time envelope in terms of rise, duration, and decay
fluctuations of spectral envelope and pitch

onset differing notably from the steady state

aprwbdpRE

Acoustic features underlying timbre

= Usually when signal processing people (like me) talk
about timbre, they think about the spectral envelope

= Stems from speech recognition
= Limited view, but good as a first approximation

Time-varying spectral envelope

= As a first approximation, let us assume
“timbre ~ levels at critical bands as a function of time”

= Flute (left) and violin (right) spectra

; § & <@




Critical-band scales

= Critical-band scales describe the frequency resolution
of the auditory system

= On the previous slide, ERB scale was used
forp = 21.4x10g10(0.00437 f,, +1)

= Mel-scale is often used too
fLe = 2595x10g10(0.00143 f,,,+1)

= Bark scale is very similar, see comparison below

3163 125 250 500 1000 2000 4000 8000 16000  Frequency (Hz)
13 5 7 9 M 13 15 47 19 021 28 2% 4 29 ¥ 83 ¥ 7 39 4 ERBartical bands

}‘1 } 23 }‘4 587880110 jwa G I‘w ‘1=7 ‘w} 19 }‘20 21 gﬁ g% 2% Barkcriical bands
12 3 45 6T 890 @2 W BB oA 2 A% 2B N 2 M I Melfequency/ 100
M2345678 9 101112 13 14 15 16 17 18 19 20 21 2 23 4 2 26 2 ddoclaws
N 2 B 9% 108 12 2 o

Time-varying spectral envelope

= More examples: vibraphone (left) and piano (right)

= On Schouten’s list, this representation covers
2 (spectral envelope), 3 (time envelope), part of 4
(fluctuations) and much of 5 (onset vs. steady)

WEOWE [

Variation from “tonal“ to “noiselike*

= Time-varying spectral envelope is the main determinant
of timbre, but it is not all

= |n music, there are other important factors too

= Consider the variation from “tonal” to “noiselike”

= In the following examples, the proportion of tonal vs.
noisy spectral components is varied, keeping the time-
varying spectral envelope unchanged

= Flute & Singing & <« «

Variation from “tonal“ to “noiselike*

= The above suggests that we should break a music
signal into its tonal and noisy components and then
attach “proportion of tonal vs. noisy" descriptor to each
critical band (in addition to its level)

= Useful tools for doing this
= Sinusoids + noise model [Serra-1997]
= Harmonic and percussive separation [Ono-2008]

Timbre features beyond time-varying
spectral envelope

= In examples below, the time-varying spectral
envelope of one sound (“mould“) is imposed on
another sound (“material“), without changing the
spectral fine structure or phases of the latter sound

= Does the identity of the source change?

trumpet clarinet piano flute
&g trumpet Qr L% L'
& clarinet
& piano &

& flute & “ <
= Conclusion: spectral fine structure and phases
affect timbre too

Main acoustic factors of timbre

= The above timbre representations are not very compact
= What are the main acoustic factors of timbre differences?

= Multidimensional scaling (MDS) experiments address
this question:

1. Let subjects rate the '||'II
dissimilarity of timbre pairs ||
2. Squeeze the data into
a low-dimensional space,
trying to preserve distances
3. Find acoustic correlates to
the dimensions of this
perceptual space

[Grey-JASA-77] mo




Main acoustic factors of timbre

= Note that MDS is based on distances only, not on
absolute positions (- rotational ambiguity etc.)

= Main acoustic factors of timbre found in MDS
experiments [Grey-77, Krumhansl-89, McAdams-95, Caclin-07]

= Spectral centroid (center of gravity): £ kX(k) / £ X(k)
= Log attack time (1og(t,.—tiresn))

= Spectral irregularity (=~ amplitude difference of
neighbouring harmonic partials)

= Spectral flux (irregularity over time)

Acoustic feature extraction for timbre

= Let us move on from timbre perception to the
practical extraction of acoustic features from audio
for timbre description

= Emphasis here is on musical and perceptual
relevance of the features

signal

= MFCCs describe the spectral envelope
and are the most widely used feature
for recognizing speech or instruments

= Calculation

spectrum

MTHITIITY

'II,[II'.H.I :_.\:I'

1. Compute a power spectrogram WMet scaling and
othi

2. Warp to Mel-frequency scale = nfnm

3. Log of the powers at Mel bands—>dB | spectrum

4

. Discrete cosine transform->decorrelate Logarithm I
= Toolboxes: see e.g. [LabRosa code page]
DCcT
mel
cepstrum

Mel-frequency cepstral coefficients (MFCC)
= Reasons why MFCCs are popular:
= Straightforward to calculate

= Mel-frequency scale Large (small) numerical change
= Log of magnitudes « large (small) perceptual change

= Discrete cosine transform} Decorrelation, energy compaction

= The amount of MFCC coefficients included controls the
frequency resolution of the modelled spectral envelope

@ ¢ € @

MFCC: Motivation for frequency and
magnitude warping

. Trumpet sound Vowe! [a€]
= Linear scale
= usually hard to o 0
"see” anything L
= Log-frequency 0 3 s ; 3
= each octave is o I =
approximately 3 250
equally important & 5 |
perceptually fo—LUR %, i

= Log-magnitude
= perceived change
from 50 to 60dB
about the same as - B
from 60 to 70dB w0t 0 10 10

Frequency (Hz) Frequency (Hz)

=T =T~ T =]
Aas

Other acoustic features

= Alot of different features have been used for
instrument classification

= See [Peeters-TechReport-2004] for a comprehensive list

= However, many features are redundant with MFCCs
and do not make a substantial improvement in
instrument classification, for example

= When using several features, it is important to
decorrelate them and reduce the dimensionality by
principal component analysis (PCA) or linear
discriminant analysis (LDA) or independent
component analysis (ICA) [Matlab, Duda-Hart-book-2001]




Timbre model for a sound source

= Note that acoustic features typically describe the
properties of a short segment of one sound

= Atimbre model should represent all sounds emitted
by the modeled sound source (instrument)

= Typical approach
= extract acoustic features from several example sounds

= use a statistical model to represent the
distribution of the features for a given source

Is time-frequency plane the right place for
timbre modeling?

= Left: observed; Right: modeled with MFCCs
= upper: as a function of frequency
= lower: —"- of harm. index O

- MFCCs do not capture
the properties that vary as
a function of harmonic index
- Need to represent spectrum
both as a function of
frequency and as a function
of harmonic index

i
F
1

Structured timbre models: Excitation-filter

= Excitation represents a vibrating object such as a guitar
string and filter refers to the resonance structure of the
rest of the instrument which colors the produced sound

= Excitation contains information about the sound
production mechanism, pitch, plucking point, etc.

instrument body
response

filter

Magnitude

Frequency

Excitation part
determines pitch

Excitation-filter signal model

= The magnitude spectrum |S,( )| is modeled as
S| = yX(hB(fy)
where f, = hF is the frequency of h-th overtone
= y represents the overall gain
= X(h) represents harmonic amplitudes at excitation
= B(f,) represents the frequency response of the body

= Consider |S¢(f;,)| on a decibel scale:
[Saa(l = vgg+Xaa(M+Byg(fy)
where

Sge(] =10log;,(IS(P))
- Logarithm renders the model linear

Task

= Learn such X(h) and B(f;) that all sounds emitted by the
instrument can be approximated with the model

= Harmonic levels X z(h) and body response Bgg(f) are
further represented with a linear model so that the
number of free parameters can be controlled:

S o)
XdB(h):eriXi(h) BdB(f):zﬁjbj(f)
i=1 i
- Parameters to be estimated are the coefficients & and p;

= Note: the vector of ~ 30 numbers [g;, ;] represents all
sounds of the instrument (even without further statistical
modeling) > compact model

23

Models learned for piano, clarinet, and
vibraphone

Excitation Filter
K glh)

Magnitude [dB]
"
[=]
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Marimba

= Example spectra (red)

obtained by varying + - |
the pitch !
" . l" ez
— i
. 5.
. e
MFCC: |- i i §

Temporal evolution

= So far we have discussed only models for the
short-time spectrum within individual frames

= From previous examples (static spectral), it is clear
that temporal evolution is very important

= Auditory system is quickly “exhausted” when
listening to static spectra

Conventional ways of representing
temporal evolution

= Calculate time differential of features and append
them to the feature vector (e.g. MFCC and AMFCC)

= Stack feature vectors from M successive frames
into a single long vector, “audio shingle”

L,

Feature

[
1| I |||I“4HI ,|,,1',|'1|f

Y vy l!ﬂ!'

'I'l me (frames)

Conventional solutions: HMM

= Hidden Markov models (HMM)

= state-conditional observation densities describe
the observations generated by each state
= transition probabilities control switching between
the states
ol 02 o3 0_‘! 05 of

= HMM takes into account
temporal structure while »
allowing duration variation

U ) (]
A w w,

>
>

Conventional state models (HMM)

= Many musical sounds are poorly modeled using a
convenional state model, where time-varying
spectra are modeled by switching between states

= Figure: piano energy
envelope modeled
with three states

.(' original

"% model

01 02 03 04 05 08 O 08 09 1
Tiera (3]

Conventional state models (HMM)

= Adding more states helps, but is inefficient




Interpolating state model

= Contrary to the above models, most musical
sounds can be represented efficiently by
interpolating between suitably selected spectra

= Several examples of this in sound synthesis

= Figure: piano energy
envelope modeled
with three states

= Occurrence times
of the three states are ¢,
indicated on the x-axis =

[*F original

% model

Interpolating state model

= The interpolating state model can be seen as a
generalization of the attack-decay-sustain-release
(ADSR) paradigm

§ Attacl Decay
%_ Sustain
5 Release
= Generalizations
= Multi-dimensional data Time
= Turning points and levels are automatically

estimated
= Not specific to audio data (generalization of VQ)

Interpolating state model

= |nput data to be modelled are sequence of feature
vectors x(i) extracted in frames i=0,1,...,T-1

= |dea: find a small number of “state vectors” (anchor
points in the feature space) so that the data can be
approximated by interpolating between these

= There are K < T states and each has its
characteristic state vector s(k)

= Figure: Output of the model i)
is generated at the transitions
between states, as a linear

interpolation of the state % : o

vectors at the two ends

Interpolating state model

= During the transition, the model moves with a
constant speed towards the next state

= The occurrence times of the states in their pure
form are called nodes

= Nodes n=0,...N-1 are
characterized by a s
time stamp t(n) € [0, T-1] ==
and state number that ‘__','
occurred q(n) € [0,K-1]  %..

= Figure: ‘
3 states, 5 nodes

Parameter estimation

= Parameters of the model can be estimated in TlogT
time, where T is the length of the feature sequence
[Klapuri-TASLP-2010]

Interpolating state model

= Piano: varying the number of states




Interpolating state model

= Flute: varying the number of states

Multidimensional data

= Modeling piano MDCT coefficients (with 2 states)

NA N AN : ['\ AR AN AR A AN = Note _that st_ate occurrence times are common to all

IRy \ [\ | \ | 1! \/ '|L / \ [ l". {\ / \/ I"L .'I\ [ \\ { | ten dimensions ’

[ \/ \ | II |I | 1 | i \ f II |I [ 'I \/ 1 | . J\‘

ARV - B T ,.’ R Py

| | : | |
L. 1 || L/ 2 \ ' 4 LA
.I 1 ] i I

f \ J 'II | I'-_.Iul | i | 1
~ i || L' P || N 1?2 Time (states shawn)
Audio coding with interpolating state model Audio coding
[} original

= Pitch-synchronous M0 0 B) T Pich anatyate
waveform modeling: pitch marks p, |
assumes only one sound o[ Pleh-aynchronous
is playing at a time S T
(monophonic) )
= Pitch (period length), energy, Interpolating state mode!
and waveshape are each Parameters {E, 0, 8],
encoded separately . ft-a.8}
analysis it Sl
synthesis

L4
Reconstruct pitch marks
RMS levels, and MDCT coeffs

Pme 'L

audio out () . 4
-+ 1 Resynthesize sound

= Piano: varying the number of states

1€ | 2

Audio coding

7, original
* Flute: varying the number of states |
1€ 2%
1% A 7

Interpolating state model: Summary

= Interpolation might be a good idea in music

= About 3dB better SNR than using vector
quantization with the same model order

= The method has not been used for audio
classification so far

= The model is completely deterministic, therefore

further statistical modeling of the parameter
distributions is required




Modulation spectrum: Texture of music

= Modulation spectrum is a promising way of
modeling the texture of complex music pieces,
and complex timbres, such as animal sounds
= Ak.a. fluctuation patters [Pampalk-MSc, Dixon-03]
= Shift-invariance

m o O Z
Conventional features

Modulation
spectrum

=

Frequency band

Modulation frequency

Time

Modulation spectrum
= Video examples here are courtesy of Thomas Grill

[grrrr.org]

Birds Music

Applications of timbre analysis and
modeling

= |nstrument recognition
= Sound source separation and streaming
= Sound synthesis and composition

= Analysis of instrument acoustics

Remaining challenges

= Polyphonic instrument recognition

= would have implications on robust speech recognition
and sound separation

= see [Kitahara-06, Essid-06, Burred-09, Heittola-09]

= Polyphonic recognition and sound separation are closely
related problems

= solve one and you have solved the other
= recognition allows generating a spectro-temporal mask

Conclusions

Basics of timbre modeling stem from hearing
and are therefore common to speech and music:
critical-band scales and log-magnitude scale

Musical instruments comprise several sound
production mechanisms. Excitation-filter model is
needed to capture aspects of excitation well.
Musical sounds are generally more slowly-varying
than speech, therefore interpolating models are
well-suited in music

Modulation spectra have attractive properties for
modeling the texture of music
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Part IV: Melody
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Melod Example:
y “Let It Be* $e ST S i tareey |
Whenl find my-self_in  times of wroulde  Mother Mar ¥ comesto me,
= Oxford English Dictionary: “A series of single notes & § Cr T sy SE - ]
arranged in musically expressive succession* spaking wonds of  wis - dom, Let it e,

= Usually performed by a lead singer or by a solo
instrument

= The part of music that listeners tend to remember
and are innately able to reproduce by humming

= Recent MIR PhD theses addressing melody and
vocals extraction: [Paiva-06, Ryynanen-08,
Fujihara-10]

§

F4:685 [ 4 z |
. Ed:Eal - j 1
= 1 m
B D4 : 62} LS 1] F m - B m
= ca cn:l-u'u-_ hn---.-.q-..d._._h._. vl calbiay L
g B3 : 59} L E -
o
5 A3'5?| ? P ’ -
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AR il R L o 1 ] S
13 14 15 16 17 18 19 20 21 22 23
time (s)

[Ryynénen-PhD-08]

Difference between audio and written music

= Note how far the sung melody is from the idealized
written music

= Vibrato, glissando, ambiguities (see e.g. E4 note
“Let” at 22.4 s)

= This is not because the singing is below ideal, but
because written notation is so limited

= Deriving discrete notation from a singing
performance requires heavy use of musical context

“Tom's Diner*
by Suzanne Vega

“‘

= About as “right-angled*
a performance as it gets

Pitch salience




“Summertime*
by Ella Fitzgerald

= Vibrato and glissandi (2 s)
= Formant structure

Pitch salience

-
N
! ¥
e
e
Mot
N
. .

“Political World*
by Bob Dylan

= Short low-pitched notes
at the beginning

Pitch salience

“Nothing Compares 2 U*
by Sinéad O‘Connor

= Trick at 3s, falsetto at end
= Formant around 3kHz

Pitch salisnce:

“Folsom Prison Blues*
by Johnny Cash ¢

= Glissandi near the end

Pitchsalience

Acoustic characteristics of melodies

= Pitch range typically 100Hz—1kHz (Ab2—-C6)

= Relatively prominent (loud) compared to other
instruments

= Vocal timbre: varying but identifiable
= Usually panned at the center of the stereo field

= Vibrato and pitch glides make the vocals stand out
from among the accompaniment

= All these can be utilized in melody/vocals extraction

1. Track the pitch of melody
(and select corresponding
spectral components) =
[Goto-04, Paiva-05, Fujihara-07, U e onds z5 3
[Mesaros-07, Li&Wang-06, Virtanen-08] [Virtanen-08]

2. Train two timbre models, one for vocals and one for the
accompaniment, and use these to pull out the vocal
components [Ozerov-05, Durrieu-10]

3. Use stereo information to
pick a source at certain
angle of arrival [Barry-2004]

4. Data-driven [Poliner-06] [www.audioresearchgroup.com]




Stereo information

= Stereo info can be used to pick a source at a certain angle
= Spatial information is important for human scene analysis

= Usability for music analysis depends heavily on genre
Left Right

< i

Stereo information

= For an example method, see [Barry-2004]

= Select spectrogram components based on their
interaural intensity difference (amplitude difference
in the left- and right-channel spectrogram)

www.audioresearchgroup.com = Demos

Timbre models

= Consider, for example [Durrieu-TASLP-10]:

= Input power spectrogram is modeled as the sum
of the leading voice and the accompaniment

= source-filter model for vocals, implemented in
the statistical framework of mixture models

= model for the accompaniment derived from
non-negative matrix factorization

= Pitch obtained as a side-information
= Results highly ranked at MIREX'09 (#2 and #3)

= Melody transcribers of Dressler [Dressler-MIREX-
09] and Goto [PreFEst-SC-04] utilize timbre too

Pitch information

= Pitch content is central for a melody

= Can extract using a multipitch estimator, or by performing
mapping from time-frequency to time-pitch [Klapuri-ISMIR-09]

Frequency

Acoustic modeling

= For acoustic and musicological modeling of
melodies, consider as an example the method
[Ryyné&nen-CMJ-08]

= Focus on pitch information: no timbre or stereo
features included in the feature vector

MODEL
PARAMETERS

Musical FEATURE
i * EXTRACTIO

- i

MODEL
PARAMETERS

Time differential of pitch salience

= Take advantage of the fact that vocal pitch is highly
time-varying - vocals stand out in ASalience

= Stable-pitched instruments filter out (except at the

point of onset)
Fitzgerald: “Summertime” 'W.




Time differential of pitch salience Hidden Markov model for acoustic features

1. Extract frame-wise acoustic features:
pitch salience, Asalience, onset accent (not shown)

2. Use training data (RWC Pop with time-aligned audio

The Beatles: “Let It Be” &
and MIDI) to learn HMM parameters for note events

N P P
ossl | 050 |

= 5 s

o ATTACH | 014 SUSTAM | 910, NOISE | ..
| state | \ STATE | o002 \ STATE J
N A

Acoustic model for melody versus

Side-note about HMMs background models

= Cambridge hidden Markov model toolbox (HTK) = Separate models trained for
= excellent toolbox for training and using HMMs = melody notes
= well-documented, convenient to use, and supports = bass notes
cutting-edge stuff = other instruments’ notes
= (althought was not used for the described system) = silence/noise

= In the time-pitch plane, each MIDI note in each frame
must be classified into one of the above categories

2
2
a
s
Time frame
Musicological modeling Utilizing musical context
= Musical context and assumptions about “typical” = Guess the next note
melodies can be used to resolve otherwise
. . . —] No context > have to rely on the
ambiguous situations -+ =7 (often ambiguous) observation only
P(n| 0)
— 4 I s Key (scale) information helps to
- - - resolve pitch inaccuracies (C vs C#)
P(n| 0, k)

Preceding note helps to remove
octave errors and spurious short
detections (melodic continuity)
P(n| o, niy, k)
Several preceding notes implicitly
encode some of the chord context
P(n]0, Ny, Ny, K)




Utilizing musical context

= In principle, the larger the context the better, but in
practice, large models are hard to train and use (decode)

Musicological modeling: N-gram models

= N-gram models the probability of the note pitch based on
N-1 previous note pitches: P(n;| Ny..q) = P(N; | Npnateter )

= Figure: Key-dependent note bigram probabilities for
C major / A minor key pair P(n, | n,_;, k)

= Bigram probabilities PO
estimated as = . :
P(n [ ne.y) o |
=P(n, ny) / P(ny) _ E =
~ Cnt(n, ny) / Cnt(n.,) :

= Smoothing is needed
to avoid zero probabilities m

(e.g. Witten-Bell) 2 ‘

From nata

Combining acoustic and musicological models

= Hierarchical HMM is an option widely used in speech rec.

= Musicological model operates at a higher level, assigning
probabilities for transitions between note events

= Task: find the most probable path given observed data
and the model parameters > Viterbi algorithm

TIME

Transcription examples
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Vocals separation

= Vocals carry a lot of meaning besides the pitch contour
= lyrics
= identity of the singer
= vocal timbre characteristics
= musical and emotional expression
= Analysis becomes easier
if vocals can be separated 0
from the rest =
= Figure: singer identification AR
in polyphonic music with/without
vocals separation [Mesaros-2007] oo

a 30
Singing to accompaniment ratio E]

Singer icentification accuracy

Correct [%]

Vocals separation based on melody pitch

= Binary masking: estimate pitch and then predict
time-frequency points where vocals are present

05 1 15 2 25 3 2 25 3
time/seconds time/seconds

[Virtanen-08]




Overlap in time-frequency

= The above methods assign all the energy at
harmonic frequencies to vocals

= When sounds overlap in time and frequency,
separation quality degrades

= Consonant musical intervals cause partials of
different instruments to overlap

= Wideband percussive sources

Estimation and removal of accompaniment

= Learn model for the accompaniment using the non-vocal
regions and a binary-weighted NMF [Virtanen-08]

-> Predict & subtract the accompaniment from vocal regions
= Some similarity with the approach of [Durrieu-TASLP-10]

frequency/kHz

2 25 35 4 45
time/seconds.

frequencylkHz

[Virtanen-08]
Effect of ing th i ¢ Using non-negative matrix factorization
eCtl Oof removing the accompanimen as a background model

. T N T
= Left: vocals obtained using binary masking only * Signal model —— -
= Right: vocals after subtracting the accompaniment F{{ X } ~ FHB} [ ¢ Iknw

X = BG

Magnitude Columns of B: Rows of G:

2 25 3
time/seconds

[Virtanen-08]

spectrogram  basis spectra time-varying gains

- NMF represents matrix as
a product of two lower-rank | = ex
matrices o N wwm

= Figure: NMF for drum track
spectrogram bl
G: ! | ..| J

How many NMF components are needed to
represent the accompaniment?

= |n these examples, magnitude spectrograms of music
are factorized with NMF and original phases are used for
resynthesis
Number of components in factorization
oig 1 2 4 8 16 32

= Drums [WeckI] & € € ¢ © € €
= Classical [Vivald] & « @« & & « @
= Rock [Santana] « & % « « ¢ «
= Rock [U2] L L
= Bass[Laboriel] % & 4% ¥ <« &« «

Applications of melody and vocals extraction

= Karaoke

= Music-oriented games

= Replace vocals on an existing recording with user input
= Alignment of textual lyrics with audio

= Singer identification

= Query by humming




Conclusions

= Melody and lead vocals are a central part of many
music types

= Vocal melodies have acoustic and musical
characteristics that can be modeled meaningfully

= Utilization of musical context improves the
robustness of analysis considerably

= Vocals separation can be done to a reasonable
degree, and by using various different approaches
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