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ABSTRACT

Polyphonic music classification remains a very challeng-
ing area in the field of music information retrieval. In this
study, we explore the performance of monophonic mod-
els on single parts that are extracted from the polyphony.
The presented method is specifically designed for the case
of voiced polyphony, but can be extended to any type of
music with multiple parts. On a dataset of 207 Haydn and
Mozart string quartet movements, global feature models
with standard machine learning classifiers are compared
with a monophonicn-gram model for the task of composer
recognition. Global features emerging from feature selec-
tion are presented, and future guidelines for the research of
polyphonic music are outlined.

1. INTRODUCTION

In the field of music information retrieval, much research
has been done in symbolic music genre classification, where
a model has to assign an unseen score to a certain class, for
example style, period, composer or region of origin. There
are two main categories of models that have been widely
investigated:global feature models and n-gram models.
Global feature models express every piece as a feature vec-
tor and use standard machine learning classifiers, whereas
n-gram models rely on sequential event features.

In a recent paper [10] the results of a thorough compar-
ison of these types of models are reported for the task of
classifying folk songs based on their region of origin on a
large monophonic data set. That study demonstrates that
the n-gram models are always outperforming the global
feature models for this classification task. It is an interest-
ing question whether this result still holds in a polyphonic
setting.

In the literature, it appears that most research has been
investigating classification or characterization of melodies
(monophonic) [5, 14, 16], but only few efforts have been
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made to develop polyphonic models. In [15], orchestrated
polyphonic MIDI files are classified using global features,
including some features about musical texture and chords.
A set of polyphonic features based on counterpoint proper-
ties was developed by [19], and applied to the task of com-
poser classification. They find that the distinction between
Haydn and Mozart string quartets, which is very interesting
from a musicological point of view, is a hard classification
task.

When considering polyphonic music, it is essential to
qualify the form of input. Two formats can be considered:

voiced: a fixed and persistent number of parts; and,

unvoiced: free polyphony that is not available in, or can-
not be easily divided into parts.

A typical example of voiced polyphony is a string quar-
tet, consisting of 4 well-defined voices (Violin 1, Violin
2, Viola and Cello). Unvoiced polyphony is common, for
example, in piano music.

Another way to view this dichotomy of polyphonic mu-
sic is in terms of a MIDI file type: voiced (type 1), or un-
voiced (type 0), realizing of course the grey area where
tracks within a type 1 file may contain internal polyphony,
and where type 0 files identify voices by use of channel
numbers.

This paper investigates how monophonic global feature
andn-gram models perform on the classification of Haydn
and Mozart string quartets in their original voiced format.
The voiced structure is exploited since these monophonic
models are applied to separate voices. The initial database
used in [19] containing 107 string quartet movements was
extended to a total of 207 movements in order to measure
statistically more relevant differences.

Two tentative hypotheses from previous work [11] are
being verified in this paper:

1. n-gram models also perform better than global fea-
ture models on monophonic parts extracted from the
polyphonic texture.

2. the first violin is the most distinctive voice of the
string quartets.
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Adagio
Wolfgang Amadeus Mozart
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Figure 1. The voice separation of the string quartets into Violin 1, Violin 2, Viola and Cello.

For the global feature models, special care has been
taken to apply feature selection within the inner loop of the
cross validation scheme, in order to avoid overoptimistic
evaluation estimates [8, 17]. A similar procedure has been
set up to tune the parameters of the learning algorithms
during the training phase. Features that emerge recurrently
in the feature selection process are highlighted.

The remainder of this paper is structured as follows. We
start by introducing the dataset and the music representa-
tions, global feature andn-gram models, and the classi-
fication methodology in the next section. Then, we give
the results of the described models on the Haydn/Mozart
dataset. We end with a discussion and some directions for
future work.

2. METHODS

In this section we describe the dataset used for our exper-
iments and we will give a short overview of both global
feature andn-gram models. Furthermore, we introduce
our classification methodology outlining the cross valida-
tion setup combined with supervised feature selection and
SVM parameter tuning.

2.1 Dataset and music representation

The Haydn/Mozart dataset is composed of 112 string quar-
tet movements from Haydn and 95 string quartet move-
ments from Mozart, including most of the pieces from the
dataset used in [19], but extending it as much as possible
to nearly double its size. We chose to focus on the pe-
riod 1770-1790 in which both composers were active, dis-
carding early or late Haydn quartets which might be easy
to classify. In order to maximize the number of quartet
movements from Mozart, we included 8 movements from
two flute quartets (K.285, K.298) and one oboe quartet
(K.370), which are written for flute/oboe, violin, viola and
cello, and thereby very similar to the string quartets. The
original scores in **kern format were found on the website
of the Center for Computer Assisted Research in the Hu-
manities at Stanford University [1]. We transformed these
to clean MIDI files, ensuring that the four voices appear on
separate tracks and that all barlines are correctly synchro-
nized in all voices by correcting several errors in note du-

rations. We retained only the highest note of double stops,
thereby reducing each voice to a purely monophonic se-
quence of notes. To enable the use of monophonic classi-
fication techniques, we created four monophonic data sets
called Violin 1, Violin 2, Viola and Cello by isolating each
voice of every string quartet movement, as illustrated in
Figure 1.

2.2 Global feature models

In this section we introduce global features and the cor-
responding global feature models. A global feature sum-
marizes information about a whole piece into a single at-
tribute, which can be a real, nominal or boolean value, for
example “average note duration”, “meter” or “major/minor”.
With a set of global features, pieces can be simply re-
expressed as feature vectors, and a wide range of standard
machine learning algorithms can then be applied to evalu-
ate the feature set.

Voiced polyphony presents the advantage of having a
fixed number of monophonic parts, which enables us to
isolate these parts and apply monophonic models. In this
paper three global feature sets are used to represent the
monophonic parts. These features describe melody char-
acteristics, mainly derived from pitch or duration, whereby
we mean that at least one pitch or duration value is in-
spected for the feature computation.

The global feature sets chosen are the following :

• The Alicante set of 28 global features, designed by
P.J. Ponce de Léon and J.M. Iñesta in [16]. This set
was applied to classification of MIDI tunes in jazz,
classical, and pop genres. From the full set, we im-
plemented the top 12 features that they selected for
their experiments.

• TheJesser set, containing 39 statistics proposed by
B. Jesser [13]. Most of these are derived from pitch,
since they are basic relative interval counts, such as
“amajsecond”, measuring the fraction of melodic in-
tervals that are ascending major seconds. Similar
features are constructed for all ascending and de-
scending intervals in the range of the octave.
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• The McKay set of 101 global features [15], which
were used in the winning 2005 MIREX symbolic
genre classification experiment and computed with
McKay’s software package jSymbolic [2]. These
features were developed for the classification of or-
chestrated polyphonic MIDI files, therefore many fea-
tures, for example those based on dynamics, instru-
mentation, or glissando, were superfluous for this
analysis of monophonic single voices and we were
able to reduce the set down to 61 features.

These global feature sets do not show many overlapping
features, only some very basic ones occur in maximum two
of the sets, such as the “pitch range”. Therefore it is inter-
esting to join the three feature sets to form theJoined set,
which means every piece is represented as a data point in a
112-dimensional feature space. We are interested in find-
ing out which features are relevant for this specific task
of composer classification, therefore we will apply feature
selection on this Joined set.

2.3 n-gram models

In this section we introducen-gram models and how they
can be used for classification of music pieces using event
features.n-gram models capture the statistical regularities
of a class by modeling the probability of an event given
its preceding context and computing the probability of a
piece as a product of event probabilities. This technique
is particularly well-known for language modeling, a word
in language being roughly analogous to an event in mu-
sic. The contextei−1 = [e1, e2, . . . , ei−1] of an eventei is
usually limited to a short suffix[ei−n+1, . . . , ei−1], mean-
ing the probability of the current event only depends on the
n − 1 previous events. Then-gram counts of the training
data are used to estimate the conditional event probabili-
ties p(ei | ei−1), and the probability of a new pieceeℓ is
obtained by computing the joint probability of the individ-
ual events in the piece:

p(eℓ) =

ℓ∏

i=1

p(ei | ei−1) (1)

To use ann-gram model for music classification, for each
class a separate model is built, and a new piece is then sim-
ply assigned to the class with the highest piece probability.

For monophonic music,n-gram models and more pow-
erful extensions are naturally applicable [6, 10], but poly-
phonic music needs first to be converted into a sequential
form. One way to do this is to simply extract a voice (e.g.,
Violin 1) from the polyphonic texture.

To reduce the sparseness of then-gram counts, we do
not model the pitch or duration directly, but we first trans-
form the music events by means of event features. An
event feature assigns a feature-value to every event, in our
case to every note in the music piece. The chosen event
feature determines the level of abstraction of the data rep-
resentation. The event feature we will use is the melodic
interval. Models are constructed for a class by extracting
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pitch 74 74 79 79 78 79
melodic interval ⊥ 0 +5 0 -1 +1
melodic contour ⊥ r u r d u

duration ratio ⊥ 3/2 1/3 2 3/2 1/3

average pitch 77.1667
rel. freq. m2 0.4

Huron contour ascending

Figure 2. First measures of the first violon of the Ada-
gio K.080 of W.A. Mozart, illustrating the contrast be-
tween global features (lower three) and event features (up-
per four).

the same voice (e.g., Violin 1) for every piece in a corpus,
and viewing that piece as a sequence of melodic intervals.

Figure 2 illustrates the difference between global fea-
tures and event features on an excerpt of the first violon of
the Adagio K.080 of W.A. Mozart. A global feature de-
scribes a constant property of the whole piece, whereas an
event feature is associated to one particular note. A global
feature summarizes the data much more, but one uses a
whole collection of global features to build a global fea-
ture model, whereasn-gram models are constructed using
one single event feature.

2.4 Classification methodology

In this paper, two fundamentally different types of models
are applied to the task of composer classification. In order
to present any comparative results, we have to find a com-
mon way of evaluating the performance of these models. It
is common practice to set up a cross validation scheme to
obtain classification accuracies that generalize reasonably
well.

Our data set is very small from a general machine learn-
ing point of view, only 207 samples, it is therefore prefer-
able to doleave-one-out cross validation, where one uses
as much training data as possible to train the model, dis-
carding only one instance for testing purposes. For both
global feature andn-gram models, a leave-one-out cross
validation scheme was implemented.

Since global features represent every instance as a mul-
tidimensional feature vector, any standard machine learn-
ing classifier can be applied to get a performance accu-
racy. Simple classifiers such as Naive Bayes andk-nearest
neighbours can give us a good indication, but in this work
we opt for the more sophisticated Support Vector Machine,
shortly SVM, which has been proven to be a state-of-the-
art classifier [7]. An SVM makes use of a so-called ker-
nel function to determine non-linear decision boundaries
between classes, and a well-known kernel function, the
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RBF-kernel, is used in this paper [4]. In this setting, an
SVM has two parameters that need to be trained. The first
is related to the softness of the decision margin, expressing
the tradeoff between generality and classification accuracy,
commonly denoted asC. The second is a parameterσ spe-
cific to the RBF kernel function. In practice, these param-
eters can simply be tuned by doing a “grid-search” over a
large search-space of pairs(C, σ) as described in [12].

Another common machine learning technique isfeature
selection, which is often used to reduce the dimensionality
of the data or to discover which features are highly corre-
lated with the target class. In principle, feature selection
is decreasing the size of the hypothesis space, which leads
to a faster and more effective search for the learning al-
gorithms and tends to avoid overfitting. Therefore, it has
led to improved classification accuracies in some cases, or
to a compact feature set that describes the data in a more
interpretable, summarized way.

However, there is a subtlety in both feature selection
and SVM parameter optimization, a pitfall to avoid when
one usessupervised learning methods in combination with
a cross validation scheme [8,17]. In the simple case where
a separate training and test set are given, one has to apply
supervised preprocessing methods followed by the learn-
ing algorithm on the training set only, before testing the
resulting model on the test set. Expanding this to a cross
validation scheme, this means one must take care to apply
these methods within the inner cross validation loop. As
pointed out by [17], it is a common mistake to use both
training and test set for supervised feature selection, which
leads to overoptimistic and exaggerated performance re-
sults.

In this paper, SVM* denotes the model in which param-
eter tuning with a grid search has been done within the in-
ner loop of the cross validation scheme. Feature selection
is also implemented taking this special consideration.

3. RESULTS

In this section we describe the experimental results for the
classification of the Haydn and Mozart string quartet move-
ments. As a baseline, we keep in mind that the classes are
quite equally distributed (112 Haydn, 95 Mozart), which
means that 54.1% classification accuracy can be achieved
by always predicting Haydn.

To evaluate the global feature approach, the SVM* clas-
sifier method is applied to the Joined set. As described
above, this includes an SVM parameter tuning by doing a
grid search within each loop of the leave-one-out cross val-
idation. Furthermore, a supervised feature selection method
called Correlation-based Feature Selection (CFS) is also
applied. CFS is a filter method aiming to find a subset of
features that are highly correlated with the class but have
few intercorrelation among them [9]. The implementation
of SVM* and the CFS make use of the Weka machine
learning toolbox [3,20].

For then-gram model, we use a simple trigram model
of the melodic intervals. For each Haydn and Mozart a
separate model is built on the training set and a test piece

Voices SVM* SVM*+feat.sel. 3-grams
Violin 1 74.4 73.4 63.8
Violin 2 66.2 66.2 61.4
Viola 62.8 57.0 61.4
Cello 65.7 59.4 75.4

Table 1. The l.o.o. classification accuracies of the Joined
global feature set and the trigram model on the separate
voices extracted from the voiced string quartet movements.

is assigned to the class of which the model generates it with
the highest probability according to Equation 1. A global
classification accuracy is also computed with leave-one-
out cross validation. The results for both the global feature
models and the trigram models on the separate voices are
reported in Table 1.

It appears immediately that the results of previous work
done on a smaller database of 107 pieces do not hold up
[11]. Previously, we noticed a consistent tendency forn-
gram models to perform better than global feature models
regardless of the voice. Now we observe that then-gram
models perform well on the Cello dataset with an accu-
racy of 75.4%, but poorly on the other voices, whereas the
global feature models achieve an almost equally high ac-
curacy of 74.4% on the Violin 1. Our second hypothesis,
about the first violin being the most predictive one for a
composer, is also weakened because of this surprising re-
sult withn-gram models on the Cello. However, the global
feature result on Violin 1 is still an indication of its predic-
tive value. Additional computation of global feature mod-
els on the separate Alicante, Jesser and McKay sets con-
firm this indication, and show that we can order the voices
according to there predictiveness with global feature mod-
els as follows: Violin 1, Cello, Violin 2 and Viola.

The second column of Table 1 is showing the results of
the SVM* with CFS feature selection. These classification
accuracies are slightly lower than without applying feature
selection, which confirms that supervised feature selection
does not necessarily lead to an improvement when it is ap-
plied in the inner loop of the cross validation scheme. Nev-
ertheless, it is interesting for musicological reasons to see
which features emerge in the selected feature subsets for
each voice. Below we give three short examples of fea-
tures that are selected in one or more voices.

• “dmajsec”, i.e. the fraction of melodic intervals that
are descending major seconds, is selected for both
Violin 1 and Violin 2. Looking at the relative fre-
quencies of this feature, it appears that Mozart uses
more descending major seconds than Haydn for the
two violins.

• “shortestlength” emerges in both the Violin 2 and the
Viola. This is the shortest duration such that all dura-
tions are a multiple of this shortest duration (except
for triplets). Again by looking at the relative distri-
butions, one notices that Mozart tends to use smaller
shortest lengths in these voices.
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• “ImportanceMiddleRegister” is one of the features
selected for the Cello. This denotes simply the frac-
tion of notes with MIDI pitches between 55 and 72,
which is roughly the upper range of the instrument.
It seems that Haydn uses the cello more often in this
range than Mozart in these string quartets.

4. CONCLUSIONS AND FUTURE WORK

This paper has applied monophonic classification models
to the task of composer recognition in voiced polyphonic
music, specifically Haydn and Mozart string quartets writ-
ten in the period 1770-1790. An earlier dataset of string
quartet movements is extended to a total of 207 pieces to
obtain more statistical significance. The voiced structure
is exploited by extracting the separate voices to enable the
use of monophonic models. Several conclusions emerge:
that a simple trigram model of melodic interval performs
very well on the cello, achieving the best classification ac-
curacy of 75.4%, but is outperformed by the global feature
models on the other voices. Therefore, we are also unable
to conclude that the first violin is indeed the most predic-
tive voice for a composer, even though the results on Violin
1 are consistently best with the global feature approaches.

At first sight, these observations are rather disappoint-
ing, but they confirm the necessity of having a sufficiently
large dataset before making any claims. Learning algo-
rithms in symbolic music have to cope with this kind of
challenge, what shows there is still room for improvement
on a machine learning level.

Currently, we are investigating what causes this remark-
able result with the trigram model on the cello and the low
accuracy on the first violin, by looking carefully which
pieces are correctly classified by one method and not by
another, or correctly by both. Perhaps there is a core part
of this dataset that is ‘easy’ to classify, or else we might
consider using an ensemble model where one combines
the global feature models and then-gram models in order
to improve the overall accuracies. One could also wonder
how the so-called Haydn Quartets, six quartets written by
Mozart but famously inspired by and dedicated to Haydn,
influence these results. So far we have only found an indi-
cation that these particular movements are slightly harder
to recognize, this topic will be part of further research.

Further future work will address the issue of polyphonic
music in different ways. Figure 3 illustrates the global
structure of these future directions. As we detailed ear-
lier in this paper, polyphonic music can be voiced, like the
string quartets used for this study, or unvoiced, for exam-
ple piano sonatas. Each of these types of polyphony can
be modelled by monophonic or polyphonic models. The
models from this work were monophonic models, which
are situated in the outer left branch of the tree. Polyphonic
models for voiced polyphony can for example be based on
polyphonic global features taking into account voice in-
formation or harmonic global features, such as those used
in [15,19]. To apply monophonic models to unvoiced poly-
phonic music, one has to apply some voice extraction al-
gorithm first, for example theskyline method [18], which

POLYPHONIC MUSIC

VOICED UNVOICED

MONOPHONIC

MODELS

POLYPHONIC

MODELS

MONOPHONIC

MODELS

POLYPHONIC

MODELS

Figure 3. Tree structure outlining the possible ways to
approach the classification of polyphonic music.

simply slices polyphony at each distinct onset and takes the
highest pitch of every slice. The outer right branch of the
tree is dealing with unvoiced polyphonic music by means
of polyphonic models. One can easily imagine global fea-
tures representing this kind of data, for example by com-
puting relative frequencies of vertical intervals, i.e. in-
tervals between simultaneous notes. However, building a
truly polyphonicn-gram model remains a challenge, as
one has to deal with segmentation and representation is-
sues to cope with sparsity.
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