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ABSTRACT 

This paper proposes a novel and effective approach to 
extract the pitches of the singing voice from monaural 
polyphonic songs. The sinusoidal partials of the musical 
audio signals are first extracted. The Fourier transform is 
then applied to extract the vibrato/tremolo information of 
each partial. Some criteria based on this vibrato/tremolo 
information are employed to discriminate the vocal par-
tials from the music accompaniment partials. Besides, a 
singing pitch trend estimation algorithm which is able to 
find the global singing progressing tunnel is also pro-
posed. The singing pitches can then be extracted more 
robustly via these two processes. Quantitative evaluation 
shows that the proposed algorithms significantly improve 
the raw pitch accuracy of our previous approach and are 
comparable with other state of the art approaches submit-
ted to MIREX. 

1. INTRODUCTION 

The pitch curve of the lead vocal is one of the most im-
portant elements of a song as it represents the melody. 
Hence it is broadly used in many applications such as 
singing voice separation, music retrieval, and auto-
tagging of the songs. 

Lots of work which focuses on extracting the main 
melody of songs has been proposed in the literature. Po-
liner et al. [1] comparatively evaluated different ap-
proaches and found that most of the approaches roughly 
follow the general framework as follows: Firstly, the 
pitches of different sound sources are estimated at a giv-
en time and some of them are then selected as the candi-
dates. The melody identifier then chooses one, if any, of 
these pitch candidates as a constituent of the melody for 
each time frame. Finally the output melody line is formed 
after smoothing the raw pitch line. Since the goal of most 
of these approaches is to extract the melody line carried 
by not only the singing voice but also the music instru-

ments, they do not consider the different characteristics 
between the human singing voice and instruments: for-
mants, vibrato and tremolo. More related work can be 
found in our previous work [3]. 

In the present study, we apply the method suggested 
by Regnier and Peeters [2], which was originally used to 
detect the presence of singing voice. This method utilizes 
the vibrato (periodic variation of pitch) and tremolo (pe-
riodic variation of intensity) characteristics to discrimi-
nate the vocal partials from the music accompaniment 
partials. We apply this technique to the singing pitch ex-
traction so that the singing pitches can be tracked with 
less interference of instrument partials. 

The rest of this paper is organized as follows. Section 
2 describes the proposed system in detail. The experi-
mental results are presented in section 3, and section 4 
concludes this work with possible future directions. 

2. SYSTEM DESCRIPTION 

Fig. 1 shows the overview of the proposed system. The 
sinusoid partials are first extracted from the musical au-
dio signal. The vibrato and tremolo information is then 
estimated for each partial. After that, the vocal and in-
strument partials can be discriminated according to a 
given threshold, and the instrument partials can be there-
fore deleted. With the help of instrument partials dele-
tion, the trend of the singing pitches can be estimated 
more accurately. This trend is referred to as global pro-
gressing path and indicates a series of time-frequency 
regions (T-F regions) where the singing pitches are like-
ly to be present. Since the T-F regions consider relatively 
larger periods of time and larger ranges of frequencies, 
they are able to provide robust estimations of the energy 
distribution of the extracted sinusoidal partials.  

On the other hand, the normalized sub-harmonic 
summation (NSHS) map [3] which is able to enhance the 
harmonic components of the spectrogram is computed, 
and the instrument partials which are discriminated with 
lower thresholds are deleted from NSHS map. After that, 
the global trend is applied to the instrument-deleted 
NSHS map. 

 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. 

© 2010 International Society for Music Information Retrieval  

The energy at each semitone of interest (ESI) [3] is 
then computed from the trend-confined NSHS map. Fi-
nally, the continuous raw pitches of the singing voice are 
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estimated by tracking the ESI values using the dynamic 
programming (DP) based pitch extraction. 

An example is shown in the evaluation section (3.2). 
The following subsections explain these blocks in detail. 

2.1 Sinusoidal Extraction 
This block extracts the sinusoidal partials from the 

musical audio signal by employing the multi-resolution 
FFT (MR-FFT) proposed by Dressler [4]. It is capable of 
covering the fast signal changes and maintaining an ade-
quate discrimination of concurrent sounds at the same 
time. Both of these properties are extremely well justified 
for the proposed approach. 

The extracted partials with short duration are excluded 
in this stage because they are more likely to be produced 
by some percussive instruments or unstable sounds. 

2.2 Vibrato and Tremolo Estimation 

After extracting the sinusoidal partials, the vibrato and 
tremolo information of each partial are estimated by this 
block by applying the method suggested by Regnier and 
Peeters [2]. 

Vibrato refers to the periodic variation of pitch (or 
frequency modulation, FM) and tremolo refers to the pe-
riodic variation of intensity (or amplitude modulation, 
AM). Due to the mechanical aspects of the voice produc-
tion system, human voice contains both types of the 
modulations at the same time, but only a few musical in-
struments can produce them simultaneously [5]. In gen-
eral, wind and brass instruments produce AM dominant 
sounds, while string instruments produce the FM domi-
nant sounds. 

Two features are computed to describe vibrato and 
tremolo: frequencies (the rate of vibrato or tremolo) and 

amplitudes (the extent of vibrato or tremolo). For human 
singing voice, the average rate is around 6Hz [6]. Hence 
we determine the relative extent values around 6Hz by 
using the Fourier transform for both vibrato and tremolo. 
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Figure 1. System overview 
 

More specifically, to compute a relative extent value 
of vibrato for a partial existing from time to  , 

the Fourier transform of its frequency values is 

given by: 
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Lastly, the relative extent value around 6Hz is computed 
as follow: 
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The relative extent value for tremolo can be computed in 
the same way except that amplitude  is used instead 

of . 
kpa

kpf

2.3 Instrument/Vocal Partials Discrimination 

The instrument and vocal partials are discriminated ac-
cording to the given thresholds of the relative extent of 
vibrato and tremolo. The instrument partials can then be 
deleted if both the relative extents are lower than speci-
fied values. By selecting the thresholds, we can adjust the 
trade-off between instrument partials deletion rate and 
vocal partials deletion error rate. The higher thresholds 
are, the more instrument partials are deleted, but the more 
deletion errors of the vocal partials are. Usually a lower 
threshold is applied for instrument partials deletion from 
NSHS map, while a higher threshold is applied for the 
singing pitch trend estimation. The reasons will be ex-
plained in the following subsections. 

2.4 Singing Pitch Trend Estimation 

One of the major error types of singing pitch extraction is 
the doubling and halving errors where the harmonics or 
sub-harmonics of the fundamental frequency are erro-
neously recognized as the singing pitches. Here we refer 
the harmonic partials to those partials whose frequencies 
are multiples of the F0 partials. And we use “vocal par-
tials” to indicate the union of the disjoint sets of “vocal 
F0 partials” and “vocal harmonic partials”. Although the 
error can be handled by considering the time and fre-
quency smoothness of the pitch contours, most of the ap-
proaches only consider the local smoothness during a 
short period of time. However, there are many ‘gaps’ be-
tween successive vocal partials such as the non-vocal pe-
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Because the singing pitch trend should be smooth, the 
problem is defined as the finding of an optimal path 

riod between two segments of lyrics where instrument 
partials may be predominant in these gaps. These instru-
ment partials often act like ‘bridges’ which may mislead 
the pitch tracking algorithm to connect two vocal partials 
erroneously. 
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To deal with this problem, we propose a method to es-
timate the trend of the singing pitches. Firstly, higher 
thresholds are applied to delete more instrument partials. 
This might also delete some vocal partials, but it will not 
affect the pitch trend estimation as long as we still have 
enough vocal partials. Secondly, the harmonic partials 
are deleted based on the assumption that the lowest-
frequency partial within a frame is the vocal F0 partial. 
Moreover, these deleted harmonic partials are accumu-
lated into their vocal F0 partials. This process is repeated 
until we have only several low-frequency partials 
representing potential vocal F0 partials. As a result, most 
of the harmonic partials are deleted and the energy of the 
vocal F0 partials is strengthened. The energy of the re-
maining partials is then max-picked for each frame and 
summed up within a time-frequency region (T-F region). 
More precisely, given a spectrogram  computed 
from the previous MR-FFT, the strength  of the T-F 
region is defined as: 

],[ ftx

FTs ,

where  is the strength of the T-F region at the time 

index  and frequency index . The first term in the 
score function is the sum of strength of the T-F region 
along the path, while the second term controls the 
smoothness of the path with the use of a penalty coeffi-
cient 

TFTs ,

T TF

θ . If θ  is larger, the computed path is smoother. 
The dynamic programming technique is employed to 

find the maximum of the score function, where the opti-
mum-valued function  is defined as the maximum 
score starting from time index 1  to 
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t  is the index of the time frame. 
f  is the index of the frequency bin. 
n  is the number of T-F regions in the time axis 
m  is the number of T-F regions in the frequency axis 
T ,  F are the indices of the T-F region in time and frequency 

axes respectively. 

timeL ,  freqL are the time and frequency advance of the T-F region 
(hop-size) respectively. 

timeM ,  freqM are the number of the time frames and the number of 
the frequency bins of a T-F region respectively. 

 
The size of the T-F region should be large enough so 

that the global trend of the singing pitches can be ac-
quired. On the other hand, the T-F region should also be 
small enough so that the harmonics of the singing pitches 
can be separated in different frequency bands and the 
pitch changes can be captured in different time periods. 
Note that although  is fixed for all T-F regions, the 
frequency ranges are different for the T-F regions in dif-
ferent frequency bands. This is because the frequency 
bins in the result of sinusoidal extraction via MR-FFT are 
spaced by 0.25 semitone. In other words, the lower fre-
quency T-F region has smaller frequency range since the 
frequency differences between low fundamental frequen-
cy partials and their harmonics are relatively smaller than 
that of high fundamental frequency partials. 
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. At last, this optimal path is applied to 

the instrument-deleted NSHS map described in section 
2.6. 

2.5 NSHS Computation 

Instead of simply extracting the singing pitches by track-
ing the remaining vocal partials, the NSHS proposed by 
our previous work [3] is used since the non-peak values 
of the spectrum are also useful for the later DP-based 
pitch extraction algorithm. The NSHS is able to enhance 
the partials of harmonic sound sources, especially the 
singing voice. It is modified from the sub-harmonic 
summation [7] by adding a normalizing term. The reason 
of the modification is based on the observation that most 
of the energy in a song locates at the low frequency bins, 
and the energy of the harmonic structures of the singing 
voice decays slower than that of instruments [8]. It is 
therefore that, when more harmonic components are con-
sidered, energy of the vocal sounds is further streng-
thened. 

2.6 Instrument partials deletion and trend confine-
ment  

In these two blocks, the instrument partials detected with 
the lower thresholds in the previous block are first re-
moved from the NSHS map by setting their magnitude to 
zero (within the range of neighboring local minima). For 
extracting singing pitches, the thresholds are set to be 
lower in order to delete the instrument partials without 
deleting too many vocal partials. After that, the instru-
ment deleted NSHS map can be further confined to the 
estimated pitch trend (section 2.4). In other words, only 
the energy along the trend will be retained.                                              
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2.7  ESI Extraction from NSHS 
The ESI computed from the trend-confined NSHS 

map in the time frame t  can be obtained as follows [3]: 
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Class2 = vocal F0 partials with different α
Class2 = all vocal partials with different α
Class2 = vocal F0 partials with different β
Class2 = all vocal partials with different β

Figure 2. The DET curves of instrument partials false 
alarm rate versus instrument partials miss error rate by 
using different  values of α and β as the thresholds 
alone, respectively. (Here we assume class 1 is instru-
ment partials, and class 2 is either vocal F0 partials or 
all vocal partials.) 
 

where  is the NSHS map calculated in the previous 
stage, ,  is the total number of semi-
tones that are taken into account, and  is the frequency 
of the -th semitone in the selected pitch range. 
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Note that we also need to record the maximal frequen-
cy within each frequency range of ESI in order to recon-
struct the most likely pitch contours. 

2.8  DP-based Pitch Extraction 

The DP-based pitch tracking algorithm is previously pro-
posed in [3]. It is very similar to the algorithm described 
in section 2.4. The most likely pitch contour can be final-
ly acquired by tracking the ESI computed in the previous 
block. Note that we do not perform vocal/non-vocal de-
tection since it is not the focus of this study. In addition, 
the vocal/non-vocal detection can be implemented by 
various methods such as [2][3]. 

3. EVALUATION 

3.1 Evaluation for Instrument Partials Detection 

The frame size and hop size used in the sinusoidal extrac-
tion by MR-FFT are 64 ms and 8 ms respectively. The 
frequency bins in MR-FFT are spaced by 0.25 semitone 
from 80Hz to 1280Hz, resulting a total of 192 bins. The 
partials whose durations are less than 56 ms are removed 
since they are more likely to be generated by percussive 
instruments or unstable sounds. With regard to the rela-
tive vibrato and tremolo extent estimation, the parameters 
are set to be the same as those suggested by [2]. 

Two datasets were used to evaluate the proposed ap-
proach. The first one, MIR-1K, is a publicly available 
dataset proposed in our previous work [9]. It contains 
1000 song clips recorded at 16 kHz sample rate with 16-
bit resolution. The duration of each clip ranges from 4 to 
13 seconds, and the total length of the dataset is 133 mi-
nutes. These clips were extracted from 110 karaoke songs 
which contain a mixed track and a music accompaniment 
track. These songs were selected (from 5000 Chinese pop 
songs) and sung, consisting of 8 females and 11 males. 
Most of the singers are amateurs with no professional 
training. The music accompaniment and the singing voice 
were recorded at the left and right channels respectively. 
The ground truth of the pitch values of the singing voices 
were first estimated from the pure singing voice and then 
manually corrected.  All songs are mixed at 0 dB SNR, 
indicating that the energy of the music accompaniment is 
equal to the singing voice. Note that the SNRs for com-
mercial pop songs are usually larger than zero, indicating 
that our experiments were set to deal with more adversary 
scenarios than the general cases. The second dataset, 
ADC2004, is one of the testing dataset for audio melody 
extraction task in MIREX. It contains 20 song clips and 
the average length of the clips is around 20 seconds. Only 
the 12 vocal songs of ADC2004 are used for testing in 
this study. Although the size of ADC2004 is much small-
er than that of MIR-1K, it is convenient for comparing 
the performance of different algorithms which were sub-
mitted to MIREX. 

Figure 2 shows the DET (detection error tradeoff) 
curves of instrument partials false alarm rate versus in-
strument partials miss error rate by using different rela-
tive vibrato extent (α) and relative tremolo extent (β) as 
the thresholds alone, respectively. A higher instrument 
partials false alarm rate indicates more vocal partials are 
erroneously recognized as instrument partials. On the 
other hand, a higher instrument partials miss error rate 
indicates more instrument partials are recognized as vocal 
partials. Here we assume class 1 is instrument partials, 
and class 2 is either vocal F0 partials or all vocal partials. 
The solid line and dotted line show the results of using 
vocal F0 partials as class 2 with different α and β respec-
tively. The dashed line and dash-dot line show the results 
of using all vocal partials as class 2 with different α and β 
respectively. We want to show the results of using vocal 
F0 partials as class 2 because the goal of this study is to 
extract the singing pitches carried by these vocal F0 par-
tials. In contrast, the harmonic partials of the singing 
voice are comparably not as important. All of these par-
tials are extracted from the MIR-1K dataset. Since the 
MIR-1K has separated tracks of singing voice and ac-
companiment, the sources of the partials can be distin-
guished. 

From Figure 2, it is obvious that α has better discri-
minative capability to detect instrument partials than β. 
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This is because the pop music in MIR-1K has less wind 
and brass instruments than string instruments. We have 
found in our preliminary experiment1 that β has better 
vocal/instrument discriminative power for wind and brass 
instruments. 

The instrument partials deletion block applied α = 
0.1125 and β = 3. The vocal F0 remaining rate is around 
94.3% (or equivalently, 5.7% instrument partials false 
alarm rate) and instrument partial deletion rate is around 
60.4% (or equivalently, 39.6% instrument partials miss 
error rate). On the other hand, singing pitch trend estima-
tion applied α = 0.3 and β = 5.5 as the thresholds. The 
vocal F0 partials remaining rate is 72.9% and instrument 
partials deletion rate is 82.8%. 

3.2 Evaluation for Singing Pitch Trend Estimation 

The parameters for this experiment were set as follows. 
The sizes along time and frequency axes for each T-F re-
gion were 3 seconds and 13.5 semitones, respectively. 
Their hop sizes were 1.5 seconds and 4 semitones, 
respectively. The penalty coefficient θ  for the dynamic 
programming step was set to 1 empirically. 

Table 1 shows the results of the singing pitch trend es-
timation. More than 82% of vocal F0 partials remain in 
the pitch trend tunnel and the singing pitches remaining 
rate is 86%. On the other hand, only 19.19% of instru-
ment and vocal harmonic partials are retained within the 
pitch trend tunnel. In addition, 66.18% of the non-vocal 
F0 partials left in the pitch trend tunnel are deleted by the 
NSHS computation stage, and 8.07% of the remaining 
vocal F0 partials are deleted erroneously at the same time. 
Finally, 75.82% of vocal F0 partials remain while only 
6.49% of non-vocal F0 partials are kept in both deletion 
procedures. 

Figure 3 shows the stage-wise results in singing pitch 
extraction. Figure 3(a) shows all the partials after sinu-
soidal extraction. Figure 3(b) and 3(c) applies different 
thresholds on 3(a) to delete instrument partials for differ-
ent purposes. Because 3(b) applies lower thresholds than 
those of 3(c), more instrument partials are removed in 
3(c). The harmonic partials in Figure 3(c) are then further 
deleted in 3(d). Figure 3(f) is obtained by subtracting the 

                                                           

/

1 The experiment was also performed on the University of Iowa 
Musical Instrument Samples which is available 
at http://theremin.music.uiowa.edu  

detected instrument partials in Figure 3(b) from the 
NSHS map in 3(e). Figure 3(g) illustrates the T-F regions 
computed from Figure 3(d), with color depth indicating 
the strength each T-F region. Finally, Figure 3(h) is the 
NSHS map (Figure 3(f)) confined by the pitch trend tun-
nel. As can be seen in this example, the identified pitch 
trend tunnel is capable of covering the vocal F0 partials 
(represented by solid lines) while most of the instrument 
partials are deleted. 
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(a) Sinusoidal extraction using MR-FFT
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(e) The NSHS map
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(b) Instrunet partial deletion with α  = 0.1125 and β =3
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(f) Instrument partial-deleted NSHS map with α =0.1125 and β =3
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(c) Instrunet partial deletion with α  = 0.3 and β =5.5 

0 1 2 3 4 5 6 7 8 9
80

107

143

190

254

339

453

604

806

1076

T-F region time index

T-
F 

re
gi

on
 fr

eq
ue

nc
y 

in
de

x

(g) The estimated singing pitches trend-diagram
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(d) Harmonic partials deletion
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(h) Trend confined NSHS map
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Figure 3. Stage-wise results of singing pitch extraction 
for the clip ‘Ani_4_05.wav’ in MIR-1K. (a) Results af-
ter sinusoidal extraction using MR-FFT. (b) The re-
maining partials after instrument partial deletion thre-
sholds of α = 0.1125 and β = 3. (c) The remaining par-
tials after instrument partial deletion after threshold of α 
= 0.3 and β = 5.5. (d) The result after harmonic partials 
deletion. (e) The NSHS map. (f) Instrument partial-
deleted NSHS map with threshold of α = 0.1125 and β 
= 3. (g) The estimated singing pitches trend-diagram. 
(h) Trend confined NSHS map, where the solid line 
represents the ground truth of the singing pitches. 

 Vocal F0 Non-vocal F0 
Partials remaining in the 

pitch trend tunnel 
82.47 % 19.19 % 

Partials remaining in the 
pitch trend tunnel but de-
leted by instrument par-

tial deletion 

8.07 % 66.18 % 

Final partials remaining 75.82% 6.49% 
Vocal pitches remaining 
in the pitch trend tunnel 

86.30% 

Table 1. Performance of singing pitch trend estimation 
 

3.3 Evaluation for Singing Pitch Extraction 

Figure 4 shows the results of singing pitch extraction. 
The raw pitch accuracy is computed over the frames 
which were labeled as voiced in the ground truth. An es-
timated singing pitch is considered as correct if the devia-
tion from the ground truth is small than 1/4 tone (or 1/2 
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Since only the features suggested in [2] were used in 
this study, other characteristics of voice vibrato and tre-
molo could be use as new features for improving the per-
formance. Moreover, it is worth noting that the proposed 
instrument partial deletion and singing trend estimation 
techniques are general for pitch extraction, in the sense 
that they can be applied to any other spectrum-based me-
thods to delete the unlikely pitch candidates. Our imme-
diate future work is to explore the use of the proposed 
techniques on top of existing methods to confirm their 
feasibility in further improving the performance. semitone). The black bars show the performance of the 

previous NSHS-DP method [3] (ranked 5-th out of 12 in 
MIREX2009). The dark gray bars show the result of 
combining the proposed instrument partial deletion and 
dynamic programming without using the NSHS. The 
light gray bars are the same as the dark gray bar except 
that the NSHS map is applied. The light gray bars per-
form better than the ones without using the NSHS map, 
which confirms the argument that the non-peak values of 
the spectrum are also useful. Lastly the white bars show 
the performance of the proposed approach where instru-
ment partial deletion, singing pitch trend estimation, and 
NSHS are applied. 
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Figure 4. The results of singing pitch extraction. 
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