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ABSTRACT

Cepstral analysis is effective in separating source from fil-
ter in vocal and monophonic [pitched] recordings, but is it
a good general-purpose framework for working with mu-
sic audio? We evaluate covariance in spectral features as an
alternative to means and variances in cepstral features (par-
ticularly MFCCs) as summaries of frame-level features.
We find that spectral covariance is more effective than mean,
variance, and covariance statistics of MFCCs for genre and
social tag prediction. Support for our model comes from
strong and state-of-the-art performance on the GTZAN
genre dataset, MajorMiner, and MagnaTagatune. Our clas-
sification strategy based on linear classifiers is easy to im-
plement, exhibits very little sensitivity to hyper-parameters,
trains quickly (even for web-scale datasets), is fast to ap-
ply, and offers competitive performance in genre and tag
prediction.

1. INTRODUCTION

Many features for music classification have a longer his-
tory in speech recognition. One of the first steps taken
by most speech recognizers is to transform audio contain-
ing speech into a sequence of phonemes. A phoneme is
the smallest segmental unit of sound, for example the /b/
in “boy”. For a speech recognizer to work with multiple
speakers, it needs to generalize over a range of voice types
(adult verus child, male verus female). To achieve this
generalization it can be useful to separate the audio sig-
nal into two parts: the source excitation at the vocal cords
and the transfer function (filtering) of the vocal tract. Cep-
stral analysis is commonly used to achieve this separation.
The cepstrum C' is defined as

C = |Glog(|Fz|?)[? 4))

where F' is the discrete Fourier transform and G is the
inverse discrete Fourier transform or the discrete cosine
transform. One important property of the cepstrum is that
convolution of two signals can be expressed as the addition
of their cepstra.
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In general cepstral analysis for speech recognition or
music analysis is done on a power spectrum |Fx|? that
has been downsampled (compressed) non-linearly to bet-
ter model human perception of equidistant pitches (the Mel
scale). The resulting cepstral-domain values are called Mel-
Frequency Cepstral Coefficients (MFCCs). See Section 2
for details.

In the domain of music, cepstral analysis can be used
to model musical sounds as a convolution of a pitched
source (perhaps a vibrating string) and an instrument body
that acts as a filter. This deconvolution of musical source
(pitch) from musical filter (instrument) can be seen for sev-
eral instruments in Figure 1. If our goal is to generalize
across different pitches for a single instrument timbre, it
is clear that the cepstral domain has advantages over the
spectral domain.

The main use of source / filter deconvolution in speech
is allow for the elimination of the source. This is achieved
by only retaining the first few cepstral coefficients (usu-
ally 12 MFCCs for speech recognition). However, music
is not speech. The assumption that recorded music consists
of a filter with it’s own sound quality (instrument timbre)
acting on an irrelevant source is certainly false. For many
instruments, it is difficult to distinguish between pitch and
timbre, and certainly the assumption breaks down in poly-
phonic recordings.

This paper presents segment covariance features as an
alternative to means and variances in MFCCs for condens-
ing spectral features for linear classification. The covari-
ance, together with mean and variance in spectral features
provides a better basis for genre and tag prediction than
those same statistics of MFCCs. These features are quick
and easy to compute (pseudo-code given below) work well
with linear classification. Together they offer a viable ap-
proach to web-scale music classification, and a competitive
null model for research on new datasets.

2. FEATURES

We follow [1] in distinguishing two levels, or stages, of
feature extraction. Firstly, at the frame level (typically
20-50 milliseconds) we extract features such as Mel Fre-
quency scale Cepstral Coefficients (MFCCs). Secondly,
at the segment level (typically 3-10 seconds) we summa-
rize frame-level features via statistics such as the mean,
variance and covariance. For our frame-level features we
partitioned the audio into contiguous frames of either 512,
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Figure 1. Comparison of spectral and cepstral analysis for eight notes from twelve instruments. Right: The six panels
show spectral and cepstral anslysis for three of the twelve instruments. The horizontal axis is frequency for the three
spectral panels, and time for the three cepstrum panels. The vertical axis for each of the eight subplots is coefficient
magnitude. Spectral analysis (above) highlights the overtone series. Cepstral analysis separates pitch and timbre for pitched
instruments, separation less clear for marimba. Left: Nearest neighbor classifiers using spectral and cepstral features to
predict note and instrument labels—cepstrum predicts instruments, spectrum predicts notes.

1024, or 2048 samples, depending on the samplerate —
whichever corresponded to a duration between 25 and 50
ms.

We compare two kinds of frame-level features in this
work: MFCCs and Log-scaled Mel-Frequency Spectro-
grams (denoted LM features). MFCCs have been used ex-
tensively for music classification [1,3,6-8, 12, 14]. As our
null model, we implemented MFCCs as in Dan Ellis’ Ras-
tamat toolbox’s implementation of HTK’s MFCC.! Our
MFCC frame-level feature was 16 coefficients computed
from 36 critical bands spanning the frequency range O-
4kHz using the HTK Mel-frequency mapping

Mel(freq) = 25951og;, (1 + freq/700), 2)

using a type-II DCT, and with Hamming windowing. Here
the variable freq denotes the frequency of an FFT band,
and it is in units of Hz.

The definition of our LM features differs subtly from the
MFCCs in ways that make the feature computation faster
and the implementation simpler. The audio is scaled to
the range (-1.0,1.0). No windowing is applied to the raw
audio frames prior to the Fourier transform. A small con-
stant value (10™%) is added in the Fourier domain to rep-
resent a small amount of white noise and prevent division
by zero. The Fourier magnitudes (not the power of each
band) were projected according to a Mel-scale filterbank
(the M in Table 2). The loudness in each critical band was
approximated by the logarithm of its energy. Our experi-
ments used from 16 to 128 critical bands (LM coefficients)
to cover the frequencies from 0H z to 16k H z.

LM = log;o(|FA|/M +107%) 4 4 3)
MFCC = G(LM) 4

Equations 3 and 4 describe the computation of the MFCC
and LM features in terms of an audio matrix A that has a

'HTK: http://htk.eng.cam.ac.uk/
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sr <-samplerate
nf <-number of Fourier bins
nm <-number of mel-scale coefficients

nyq = sr/2
nyg mel = 2595 % logl0 (1 + nyg/700.)

# Build a Mel-Frequency Scale
# Filterbank matrix M
M = zero_matrix (rows=nf, cols=nf)
for i in 0..(nf-1):
f = 1 x nyqg / nf
f_mel 2595 % loglO(1 + £/700.)

m_idx = f_mel/nyqg melxnm
3 = floor (m_idx)
M(Jj+1,1i) = m_idx—7]

M(j+0,1i) = 1.0-m_idx+]

Table 1. Pseudo-code for building a Mel-Frequency
Scaled filterbank in the frequency domain. This code as-
sumes 0-based array indexing.

row for each frame in a segment, and a column for each
sample in a frame. The FFT is taken over columns. The
constant 10~ quantifies our uncertainty in |FFA| and pre-
vents taking a logarithm of zero. The subtraction of 4 from
the logarithm ensures that LM features are non-negative,
but take value zero when the audio is silent. The MFCCs
are the discrete cosine transform G of LM.

3. PERFORMANCE

We used three datasets to explore the value of these fea-
tures in different descriptor prediction settings: tag fre-
quency, tag presence, and genre. Segments were summa-
rized by the mean, variance, and/or covariances of frame-
level features. The summaries were classified by either a
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logistic regression model, or where noted, by a Support-
Vector Machine (SVM) with an RBF kernel.

In linear models, we trained binary and multi-class lo-
gistic regression to maximize the expected log-likelihood

- Z Z Ptrue(”x) log(Ppredicted(”I)) (5)
zeX leL

where X is the set of examples, and L the set of labels.
The linear (technically affine) prediction was normalized
across the classes using a Gibbs distribution.

eZif(x)+bi

o ZkeL eZr f(z)+b

(6)

Ppredicted (Z |(E)

where f(z) is the features we extract, Z; is the I'" row
of the linear model, and b; is a scalar bias for the {*" pre-
dictor. We fit this model by gradient descent with a small
learning rate and regularize it by early stopping on held-
out data. Our SVM experiments were performed using
LIBSVM with the RBF kernel to implement all-pairs mul-
ticlass prediction. Held-out data was used to choose the
best kernel and cost parameters (typically called v and C'
in SVM literature). Features [by dimension] were normal-
ized to have zero mean and unit variance prior to training
a classifier.

3.1 Genre Prediction

Genre classification performance was estimated using the
GTZAN dataset of 1000 monophonic audio clips [12], each
of which is 30 seconds long. The dataset features 100
clips each of the 10 genres: blues, classical, country, disco,
hiphop, pop, jazz, metal, reggae, and rock. Although this
collection is relatively small, it has been used in several
studies of genre classification [1,5, 10, 13]. Classification
was performed by partitioning the audio into 3-second seg-
ments and voting over the segments, as in [1]. Following
standard practice, performance was measured by standard
10-fold cross-validation. For each fold, the training set was
divided into a hold-out set (of 100 randomly chosen songs)
and fitting set (of the remaining 800). The results of our
models and some results from the literature are shown in
Table 2

Our best results with both the linear and SVM classi-
fiers were with the mean and covariance (or correlation) in
LM features rather than MFCC features. Our linear model
using covariance in LM features was approximately 77%
accurate, while the more expensive SVM was 81% accu-
rate. The small size of the GTZAN dataset leaves con-
siderable variance in these performance estimates (scores
are accurate to within about 4 percentage points with 95%
probability). To our knowledge, the only systems to sur-
pass our baseline linear classifier are the AdaBoost-based
model of [1] and the model of [10] based on L1-regularized
inference and non-negative tensor factorization. Both of
these superior models are significantly more complicated
and CPU intensive than our baseline. In larger datasets, the
capacity of the linear model to use more data in a tractable
amount of time should make its performance improve in
comparison to the SVM.
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Algorithm Acc.(%)
Sparse rep. + tensor factor. [10] 92
AdaBoost + many features [1] 83
*RBF-SVM with LM (m32,r32) 81
*RBF-SVM with LM (m32,c32) 79
*Log. Reg. with LM (m32,r32) 77
*RBF-SVM with MFCC (m32,c32) 76
*Log. Reg. with LM (m32,c32) 76
*RBF-SVM with MFCC (m32,r32) 74
*Log. Reg. with MFCC (m32,r32) 72
*Log. Reg. with MFCC (m32,c32) 70
RBF+MFCC [11] 72
LDA+MFCC(m5,v5) + other [5] 71
GMM-+MFCC(m5,v5) + other [13] 61

Table 2. Classification accuracies on the GTZAN dataset
of our algorithms (*) and others in the literature. ‘m32’
is the means of 32 frame-level features, ‘c32’ is the upper
triangle in their covariance matrix, ‘r32’ is the upper trian-
gle in their correlation matrix. These scores are accurate to
within about 4 percentage points with 95% probability.

3.2 Tag Frequency

We estimated our models’ performance at tag frequency
prediction using the MajorMiner dataset. The MajorMiner
dataset consists of short audio clips labeled by players of
the MajorMiner web game [7]. In this game, players listen
to 10-second clips of songs and describe them with free-
form tags. They score points for using tags that agree with
other players’ tags, but score more points for using orig-
inal tags that subsequent players agree with. There are
1000 unique tags that have been verified by two players
and there are a total of 13,000 such verified usages on 2600
clips. The average clip has been seen by 7 users and de-
scribed with 30 tags, 5 of which have been verified. The
tags describe genres, instruments, the singer (if present),
and general musical or sonic qualities.

The MajorMiner dataset includes the number of times
each tag was applied to each clip, which gives a graded
relevance for each (tag, clip) pair. After removing clips
that were tagged ‘silent’,‘end’,‘nothing’ or had a length
less than eight seconds, 2578 remained. Clips are typically
nine seconds in length but we used the first 8 seconds. As
second-level features, we summarized each clip as a sin-
gle 8-second segment. We followed [7] in using the top 25
tags (drum, guitar, male, synth, rock, electronic, pop, vo-
cal, bass, female, dance, techno, piano, jazz, hip hop, rap,
slow, beat, voice, 80s, electronica, instrumental, fast, sax-
ophone, keyboard) which accounted for about half of the
tag usages in the dataset. To ensure that each clip had a
valid distribution over these tags, we added to every clip
an extra virtual tag with a usage of 0.1. For most clips this
usage accounted for about 1.5% of the total tag usage, but
for a small number of clips with none of the top 25 tags it
accounted for 100%. The clips in the dataset were sorted
by their order of occurrence in the "three_columns.txt” file.
The dataset was partitioned into train, validation, and test
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sets by taking the 6! of every 10 clips for validation, and
by taking the 7" and 8" for testing.

We interpreted the tag usages in the MajorMiner dataset
as being samples from clip-conditional multinomial distri-
butions. We would like a function to infer that whole dis-
tribution by conditioning on the audio of the clip. This
learning setup differs from multiple independent label pre-
diction, for that case see the Tagatune results below.

Our results are summarized in Figure 2. Our best results
were obtained by using LM features and keeping many co-
efficients: 128 means, 128 variances, covariance in a 32-
dimensional downsampling of all 128 features. The best
model (m128,v128,c32) had an average (across tag) AUC-
ROC of 0.78, which is competitive with the best models
from the MIREX 2009 MajorMiner evaluation. The av-
erage AUC-ROC values across the 25 tags used here for
the MIREX 2009 submissions range from 0.72 (submis-
sion “HBC”) to 0.79 (submission “LWW?2").2

There are two interesting things to note about the ef-
fect of covariance features in the MajorMiner experiments.
Firstly, the covariance in MFCC features was strictly harm-
ful in this prediction task, when used alongside the mean
and variance. It has been argued that MFCC features are al-
ready relatively decorrelated compared with spectral mag-
nitudes [9]. Perhaps when we normalize the MFCC co-
variance features we add features with a very low signal
to noise ratio. Secondly, the LM features without covari-
ance are poorer than a like number of MFCC features.
This is similar to the simple experiment in the introduction
that demonstrated the superior ability of cepstral features
to generalize across pitch—that simple experiment corre-
sponds to using the mean frame-level feature. Spectral fea-
tures do not generalize as well across pitch without covari-
ance information, but with covariance information they are
better at it.

All the models were trained in just a few minutes on
a desktop PC. Extracting features and training the model
were fast enough that the decoding of the MP3 files was a
significant part of the overall experiment time.

3.3 Tag Presence

We also tested spectral covariance features in a larger and
sparser descriptor-based retrieval setting using the Magna
Tagatune (Tagatune) dataset. Tagatune contains 25863 30-
second audio clips [4]. Each clip is labeled with one or
more binary attributes from a collection of 188 potential
descriptors such as ‘guitar’, ‘classical’, ‘no voices’, ‘world’,
‘mellow’, ‘blues’, ‘harpsicord’, ‘sitar’. These descriptors
were collected from an online game in pairs of players use
these words/phrases to determine whether they are listen-
ing to the same song or not. The descriptors generally
refer to instrumentation, genre, and mood (see Table 4).
Attributes in the dataset are binary and do not reflect the
degree to which any attribute applies to a song. Further-
more, the nature of the data-collection game is such that
the non-occurrence of an attribute is weak evidence that

2 MIREX 2009 Results:
http://www.music-ir.org/mirex/2009/index.php
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Figure 3. Histogram of the success of a linear classifier at
predicting Tagatune attributes from LM (light) and MFCC
(dark) means and covariance. AUC-ROC reflects both pre-
cision and recall; 0.5 is expected from a random predictor,
and 1.0 from a perfect one. The MFCC features get 3 more
tags 80% right, but the LM features get 16 more tags 90%
right. Overall, LM features give better performance.

the attribute does not apply. There are many descriptors
which might apply to a song, but no player thought to use
them. Still, the Tagatune dataset provides a great deal of
human-verified annotations and audio—despite these minor
problems it is a great resource.

For the Tagatune dataset an independent logistic regres-
sion model was used to predict each potential attribute.
Only logistic regression was used because the size of the
dataset was prohibitive of the SVM’s quadratic training al-
gorithm. Song classification was performed by partition-
ing each clip into 3-second segments and voting over the
segments, as in [1]. The dataset was partitioned into train,
validation, and test sets by taking the 6! of every 10 clips
for validation, and by taking the 7*" and 8" for testing.
A plateau in validation-set accuracy (averaged across all
tasks) was reached after about 20 minutes of CPU (wall)
time, after about 10 passes through the training data.

The results of a linear classifier applied to the LM and
MFCC mean and covariance feature are shown in Figure 3
and Table 4. Again, the LM features with covariance out-
performed statistics of MFCC features. For the LM-based
model, 140 of 188 descriptors were over .8 ROC and 68 of
those are over .9. The MIREX 2009 Tagatune evaluation
used a test protocol almost identical to ours, and found that
the participants’ average ROC scores ranged from 0.67 to
0.83. Our simple model appears actually to score slightly
better than the MIREX 2009 participants did.
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Feature Cross-entropy

Ground Truth

F

LM m128,v128,c32 2.63
LM m32,var32,c32 2.65
LM m16,v16,c16 2.68
MFCC m16,v16,c16 2.71
MFCC m32,v32 2.71
LM m32,v32 2.72
MFCC m128,v128,c32 2.74
MFCC m32,v32,c32 2.76

Predicted weights sorted by true rank

True weights sorted by predicted rank

Figure 2. LM features outperform MFCC features for predicting tag distributions in the MajorMiner dataset. ‘m32’
(similarly ‘m16’,'m128’) denotes the mean in 32 coefficients, ‘v32’ the variance, and ‘c32’ the covariance (the upper
triangle of the 32x32 matrix). When covariance information is used, LM features outperform MFCCs. Images in the
middle column illustrate the recall of each model for each of the 25 most popular tags: the greater the density toward the
left, the higher the recall of the model. Images in the right column illustrate the corresponding precision. The best model

has AUC-ROC of 0.78.

4. DISCUSSION

Our covariance and correlation features help to summarize
(in a time-independent way) the different kinds of timbres
observed during a segment. The covariance (or correla-
tion) in LM frame-level features summarizes the way that
energy/loudness in different frequency bands co-occur in
a signal. Recall that the timbre of a sustained instrument
note can be crudely approximated by the shape of the spec-
tral envelope. The difficulty in recognizing instruments
in a segment after it has been summarized by the mean
or variance is that when different instruments are present
in one segment, the mean envelope can be indistinguish-
able from the mean that would come from other instru-
ment combinations. The covariance is an improvement in
this respect. If different instruments in a segment do not
play simultaneously, then the covariance will encode ac-
tivity corresponding to the (pairs of) peaks in the envelope
of each instrument. To the extent that these instruments
have timbres with different pairs of peaks, the instruments
will not interfere with one another in the segment-level fea-
ture. Still, when instruments are played simultaneously (as
often happens!) there is more interference.

4.1 MAP vs. ROC

Table 4 lists the mean average precision (MAP) and clas-
sification error rate (ERR) for some of the most popular
and least popular attributes. The classification accuracies
for most descriptors is quite close to the baseline of ran-
dom guessing. That is because most descriptors are so rare
that when a trained model is forced to take a hard classi-
fication decision, it is very difficult for the evidence from
the song feature to outweigh the overwhelming prior that
a rare descriptor does not apply. A similar finding is de-
scribed in [2]. Since the attributes are rare, even the best
models rank many negative-labeled examples also near the
beginning of the clip collection, so precision and classifi-
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Attr | Count

female vocals 386
male vocals 465
female vocal 644
no vocal 995
male vocal 1002
no vocals 1158
vocals 1184

vocal 1729

Table 3. The number of applications of several Tagatune
attributes over all 25863 clips. One of the difficulties with
Tagatune is the frequency of false negative attributes in the
dataset. For example, although vocal was applied 1729
times, the "no vocal’ attribute was applied only 995 times;
90% of the clips are labeled as neither "vocal’ nor 'no vo-
cal’.

cation error are low. But the high rate of false-negative la-
bels (see Table 3) biases the MAP and ERR measures more
than the ROC. In the case of MagnaTagatune, where there
are many false-negative labels (true instances, labeled as
non-instances) MAP and ERR criteria are potentially very
biased estimators of model performance. The ROC mea-
sure a more appropriate criterion in this context.

5. CONCLUSION

The covariance of log-magnitude Mel frequency scale spec-
tral coefficients (LM features) offer a superior alternative
to statistics of MFCCs when summarizing frame-level au-
dio features for genre and tag prediction. We have demon-
strated the advantage of our LM features on three standard
genre and tag prediction datasets: GTZAN, MajorMiner,
and Tagatune. Furthermore, these features make state of
the art performance available with just a linear classifier
(such as L1- or L2-regularized logistic regression, or lin-
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Attr Fre¢q ERR MAP ROC
guitar 0.187 0.159 0.62 0.85
classical 0.169 0.157 0.63 0.91
slow 0.135 0.135 0.32 0.77
techno 0.110 0.090 0.58 0.92
strings 0.110 0.110 0.44 0.87
drums 0.102 0.102 0.34 0.84
electronic | 0.096 0.097 0.33 0.84
rock 0.093 0.057 0.71 0.96
fast 0.093 0.093 0.31 0.79
piano 0.077 0.074 0.54 0.84
repetitive | 0.001 0.001 0.15  0.77
scary 0.001 0.001 0.02 0.97
woodwind | 0.001 0.001 0.01 0.82
viola 0.001 0.001 0.08 0.95
quick 0.001 0.001 0.00 0.56
soprano 0.001 0.001 0.17 0.97
horns 0.001 0.001 0.00 0.68
soft rock 0.001 0.001 0.00 0.70
monks 0.001 0.001 0.31 0.99
clasical 0.001 0.001 0.00 0.83
happy 0.001 0.001 0.00 0.61

Table 4. Test set performance of best model on the 10
most popular (above) and least popular (below) descrip-
tors in Tagatune. Freq is application frequency, ERR is
classification error, MAP is mean average precision, and
ROC is the area under the ROC.

ear SVM). Our results on the GTZAN dataset suggest that
RBF SVMs may offer slightly better performance when
time allows for training.

The LM features are straightforward to implement, com-
putationally cheap, and the use of a linear classifier makes
our model viable on any size of genre or tag-prediction
dataset. We believe that the model presented here has great
potential for working with industrial-scale audio datasets.

Finally, the results presented here demonstrate that the
discrete cosine transform (or inverse Fourier transform) re-
sponsible for the cepstrum’s deconvolution property actu-
ally hinders performance in some circumstances. One ex-
planation of this behavior is that our model learns a better
deconvolution-like transform of the spectral data than is
provided by the cepstrum. We admit that this is only one
possible explanation of these results and that further anal-
ysis is necessary in order to make conclusions. We believe
that this is one fruitful direction for future research.
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