
MULTIPLE VIEWPOINTS MODELING OF TABLA SEQUENCES

Parag Chordia
Georgia Tech

Center for
Music Technology
Atlanta, GA, USA

ppc
@gatech.edu

Avinash Sastry
Georgia Tech

Center for
Music Technology
Atlanta, GA, USA

asastry3
@gatech.edu

Trishul Malikarjuna
Georgia Tech

Center for
Music Technology
Atlanta, GA, USA
tmallikarjuna3

@mail.gatech.edu

Aaron Albin
Georgia Tech

Center for
Music Technology
Atlanta, GA, USA

aalbin3
@mail.gatech.edu

ABSTRACT

We describe a system that attempts to predict the con-
tinuation of a symbolically encoded tabla composition at
each time step using a variable-length n-gram model. Us-
ing cross-entropy as a measure of model fit, the best model
attained an entropy rate of 0.780 in a cross-validation ex-
periment, showing that symbolic tabla compositions can
be effectively encoded using such a model. The choice of
smoothing algorithm, which determines how information
from different-order models is combined, is found to be an
important factor in the models performance. We extend the
basic n-gram model by adding viewpoints, other streams
of information that can be used to improve predictive per-
formance. First, we show that adding a short-term model,
built on the current composition and not the entire corpus,
leads to substantial improvements. Additional experiments
were conducted with derived types, representations derived
from the basic data type (stroke names), and cross-types,
which model dependencies between parameters, such as
duration and stroke name. For this database, such exten-
sions improved performance only marginally, although this
may have been due to the low entropy rate attained by the
basic model.

1. INTRODUCTION AND MOTIVATION

When listening to music, humans involuntarily anticipate
how it will continue [8]. Such expectations help to process
information efficiently, as well as allowing complex, noisy
stimuli to be accurately interpreted. For musicians, this an-
ticipation is essential for synchronization and harmoniza-
tion. In this paper, we explore a computational model of
this predictive process based on an ensemble of n-gram
models. Specifically, we examine whether such a model
can successfully represent the structure of symbolically en-
coded tabla compositions. Our motivation for building a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

predictive tabla model is to enable more intuitive modes of
interaction between musicians and computers.

In addition to this practical goal, we hope to work to-
wards developing a computational model of musical antic-
ipation. Previous work [11] on Western melodies showed
that human judgments of melodic continuation were highly
correlated with a variable-length n-gram model. Although
we will not address human subject data here, we hope to
provide converging evidence from a markedly different mu-
sical tradition (tabla), that syntactic structure can be effi-
ciently represented using an n-gram modeling approach.

2. BACKGROUND AND RELATED WORK

Markov and n-gram models have been extensively used to
model temporal structure in music [1]. They have been ex-
tensively used in algorithmic composition, timbral analy-
sis [2] [7], structure analysis [12], and music cogniton [14].

Markov models are based on a succession of states. In
musical contexts, states represent discretely valued attributes,
such as pitch, duration, instrument, section, etc. The Markov
assumption assumes that, given the current state, the next
state is independent of previous states. This can easily
be generalized so that the next state depends on a fixed
number of past states; a first-order Markov chain depends
only on the current state, a second-order on the current
and immediately preceding state, and so on. If sequences
are directly observable, then most inference problems can
be solved by counting transitions. An alternative formula-
tion is the n-gram model in which all possible symbols of
length n are constructed from the training sequences, and
their frequency tabulated. It is easy to see that the tran-
sition probabilities for an nth-order Markov chain can be
computed by forming all n + 1-grams.

A significant problem that arises with fixed-order mod-
els is that, as the order n increases, the number of total
n-grams increases as vn, where v is the number of sym-
bols. In music applications, such as melody prediction,
where the past ten events could easily influence the next
event, and where there might be a dozen or more sym-
bols, we are left attempting to assess the relative frequency
of greater than 1210 n-grams. Even for large databases,
most n-grams will be unseen, leading to the so-called zero
frequency problem [10]. This sparsity problem leads to a

381

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

fundamental tradeoff between using the predictive power
of longer context and the increasing unreliability of higher
order n-gram counts. Variable-length n-gram models at-
tempt to overcome this problem in two ways: 1) by build-
ing many fixed-order models and integrating information
across orders (smoothing), 2) and by reserving a certain
amount of probability mass for unseen n-grams (escape
probabilities). We describe these techniques in Section 4.2.

Variable length n-gram modeling is an ensemble method
in which the predictions of many fixed-order models are
integrated. Ensemble methods such as boosting have been
shown to be effective for classification tasks [16]. Multiple
viewpoint systems, introduced by Conklin [5], and devel-
oped by others such as Witten [5] and Pearce [15] can be
thought of further generalizing the idea of integrating an
ensemble of predictive models. The extension is based on
the fact that music can be simultaneously represented in
many ways. For example, a melody can be thought of in
terms of chromatic pitches, intervals, scale degrees, or con-
tour. A rhythmic pattern can be thought of in terms of onset
times, durations or position-in-bar. If, for example, we are
trying to predict the next note in a melody, having multiple
representations is useful in capturing structure that is ob-
vious given one representation, but less so in another. For
example, a scale-degree representation of a melody might
make it obvious that the chromatic pitch, say B, is actu-
ally the leading tone, making it very likely that the next
note is C. However, if the training database contains many
melodies in many different keys, this might not be obvious
from the chromatic pitch representation. We describe the
multiple viewpoints framework in Section 4.3.

Little work to date has been done on statistical mod-
eling of tabla. Gillet [7] and Chordia [4] both used an
HMM framework for tabla transcription, while Bel and
Kippen [9] created a model of tabla improvisation based
on a context-free grammar, one of the earliest computa-
tional tabla models.

Tabla is the most widely used percussion instrument in
Indian music, both as an accompanying and solo instru-
ment. Its two component drums are played with the fingers
and hands and produce a wide variety of timbres, each of
which has been named. A sophisticated repertoire of com-
positions and theme-based improvisations has developed
over hundreds of years. Although tabla is primarily learned
as part of an oral tradition, it is also notated using a system
that indicates strokes and their durations. Unfortunately,
the correspondence between strokes and names is not one-
to-one. Depending on the context and the stylistic school,
the same stroke will be given different names. And, in
some cases, different strokes will be given the same name.
This is unproblematic in the context of an oral tradition
but requires that care be taken when interpreting symbolic
notations.

3. TABLA DATABASE

The database used for training the model is a set of tradi-
tional tabla compositions compiled by tabla maestro Alok
Dutta [6]. The compositions were encoded in a Humdrum-

based syntax called **bol that encoded the stroke name
and duration [4]. The database which is available online
consists of 35 compositions in a variety of forms. Alto-
gether there are 27,189 strokes in the dataset, composed of
42 unique symbols.

4. N -GRAM MODELING

N -gram modeling is a commonly used technique to proba-
bilistically model sequences of elements such as phonemes
in speech, letters in a word or musical notes in a phrase.
[13] N -grams can be efficiently stored in a tree-shaped
data structure, commonly referred to as a trie or prefix tree.
Figure 1 is the trie for the sequence ABAB+C. In such
a trie, branches represent the succession of certain sym-
bols after others, and a node at a certain level of the trie
holds a symbol from the sequence, along with information
about the symbol such as the number of times it was seen
in the sequence following the symbols above it, and the
corresponding probability of occurrence. In Figure 1, the
subscript below a symbol represents the symbols probabil-
ity given the context, defined by the path through the trie
to that node, while the superscript above it represents the
count value. Thus, in the topmost level, the probabilities
represent the priors for the symbols. During construction
of the trie, symbols are fed sequentially into the system
one-by-one. For the above example, after the sequence
ABAB, the trie looks like Trie1 in figure Figure 1. When
a new symbol ’C’ follows, corresponding nodes are cre-
ated at all levels of the trie: 5-gram node using ’ABABC’,
4-gram node using ’BABC’, trigram node using ’ABC’,
bigram node using ’BC’ and a 1-gram/prior entry for ’C’
at the topmost level. The corresponding probabilities are
also updated resulting in Trie 2 in Figure 1.

After the trie has been built in this manner, it can be
used to predict the next symbol given a test sequence. This
is done by following the nodes of the trie downwards from
its top, in order of the symbols in the test sequence until the
last symbol in the sequence (and the corresponding node in
the trie) is reached. At that point, the probabilities associ-
ated with the children nodes represent the predicitve dis-
tribution over the symbol set, given the observed context.
To allow for new symbols that may appear in the test se-
quence and to subsequently allow for a better matching of
test sequences with missing or extra symbols compared to
training sequences, we incorporate the concept of escape
probabilities into our trie structure, as described in [17].
The above example trie would then look like Trie3 in fig-
ure Figure 1. We describe the use of escape probabilities in
section 4.2. For long training sequences, the depth of the
trie can become large and is often restricted to a maximum
order to limit memory usage and to speed prediction given
a test sequence.

The modeling and evaluation framework was implemented
in C++ as an external object in Max/MSP along with sup-
porting patches.

382

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

A
2

0.5

1 B
2

1

A
1

1

B
1

1

B
2

0.5

Trie 1 (’ABAB’) Trie 2 (’ABABC’) Trie 3 (’ABABC’ with Escapes)

A
1

1

B
1

1

A
2

0.4

B
2

1

A
1

0.5

B
1

1

B
2

0.4

A
1

0.5

B
1

1

C
1

0.5

C
1

1

C
1

0.5

C
1

1

C
1

0.2

A
2

0.33

B
2

0.66

A
1

0.33

B
1

0.5

B
2

0.33

A
1

0.33

B
1

0.5

C
1

0.33

C
1

0.5

C
1

0.33

C
1

0.5

C
1

0.17

Esc
(1)

0.17

Esc
(1)

0.33

Esc
(1)

0.5

Esc
(1)

0.5

Esc
(1)

0.5

Esc
(1)

0.5

Esc
(1)

0.33

Esc
(1)

0.33

1 1

12

5

1

1

1

1

4

2

2

3

2

2

2

3

3

6

2

1

Level

1

2

3

4

5

(Top)

Figure 1. Illustration of tries built for the sequence ’ABAB’ followed by the symbol ’C’. Superscripts represent count
values, and subscripts represent probability values. Rounded boxes represent siblings, while italicized number at the left
of a rounded box represents the total count among the siblings, which is used to calculate the ’probability’ values. Trie 3
includes escape probabilities.

4.1 Escape Probabilities

As noted above, the zero frequency problem occurs be-
cause, in high-order models, most n-grams will never have
been observed [10]. Using a simple counting scheme, the
model would assume zero probability for these unseen events,
thereby returning infinite entropy should they occur in the
test sequence. The solution is to reserve a small amount of
probability mass for events that haven’t occurred yet. This
is done by reserving an escape proabability for each level
of the trie. Whenever an event returns zero probability,
it returns the escape probability instead. There are many
ways to assign the escape probability. Based on the results
of Bell and Witten [17], we have implemented the Poisson
distribution method. The escape probability for each level
is assigned by e(n) = T1(n)

N(n) , where T1 is the number of
tokens that have occurred exactly once and N is the total
number of tokens seen by the model so far.

4.2 n-gram Smoothing

Smoothing addresses the tradeoff between the specificity
of higher-order models (if a match can be found) and the
reliability of the n-gram counts for lower-order models.
Since higher order models are much sparser, many n-grams
will be assigned zero probability, and counts for n-grams
that have been observed will tend to vary greatly based on
the particular training database. This variance can be re-
duced by incorporating information from lower order mod-
els. There are two basic types of smoothing algorithms:
backoff models and interpolation models. Given a test
sequence, a backoff model will search for the entire se-
quence, and if no match is found in the trie, the process

continues recursively after dropping the first element of the
sequence. The process stops once a positive match is found
and the count for that n-gram count is greater then some
threshold. Interpolated smoothing, by contrast, always in-
coporates lower order information even if the n-gram count
in question is non-zero.

For this study, two smoothing methods were primarily
used, Kneser-Ney (KN) and an averaging method we term
1/N . These were also compared to a simple backoff pro-
cedure. KN was adopted because earlier work showed it to
be a superior smoothing method in the context of natural
language processing [3]. The basic idea of KN is to ensure
that lower order distributions are only used when there are
few, or no, counts in the higher order models. When incor-
porating lower information, the probability is related not to
the true count of the n-grams but rather is proportional to
the number of different n-grams that it follows. An exam-
ple in music might be as follows: given a bigram consist-
ing of two rhythmic durations, where the second duration
is transitional and not typically used on its own, we would
not assign a high unigram probability since it is only used
in association with the first duration. Implementation de-
tails can be found in [3].

Given a model, with M as the maximum order, the
weights for each model are given by w(n) = 1

m(maxOrder−n) .
In other words, the higher orders receive greater weight
than the lower orders. It is worth noting what happens in
the case where a higher-order model has not seen a par-
ticular n-gram. In that case, even though the weight for
that model will be relatively higher than for a lower order
model, the probability of the n-gram, which will be deter-
mined by the escape probability, will be very small, and

383

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

typically much smaller than the weight.

4.3 Multiple Viewpoints

Our focus in the work so far has been to implement a multi-
ple viewpoints system for music analysis, apply these prin-
ciples to traditional North Indian tabla compositions, and
identify the set of parameters that work best on this kind of
music. Though we will touch upon the basics of the mul-
tiple viewpoint system, a more detailed explanation can be
found here [5].

Conventional context-dependent predictive models track
only the most basic aspects of music, like pitch, rhythm
and onset times. Moreover, these variables are tracked to-
gether, so that finding an exact match for every possible
context is practically impossible. A multiple viewpoints
system, however, tracks each variable independently, main-
taining many predictive models simultaneously. The final
prediction is obtained by combining all these predictions
into a meaningful set of basic parameters (such as pitch
and duration). Such a system not only incorporates infor-
mation from different variables but can also model com-
plex relationships between two or more of these variables
and make use of that information to strengthen its predic-
tion. Furthermore, a multiple viewpoint system can make
much better predictions in rare event cases, because of its
ability to find context matches in at least one of its many
models.

A viewpoint is nothing more than a set of events of a
particular type. For example, a set of all pitch classes (C,
C#, D, D# and so on until B) would consititute a viewpoint
for a melody. Similarly, a viewpoint for rhythm would con-
sist of the set of all onset times within a measure. These
two viewpoints, pitch and rhythm, can be directly extracted
from the music, are independent of each other and are called
basic types. Cross types are formed when two or more ba-
sic types are combined and tracked simultaneously (T1 x
T2). A cross type formed using Notes and Onset Times
would consist of all elements in the Notes viewpoint in
combination with all elements in the Onset Times view-
point. Each element of this viewpoint is represented as a
tuple {Note, OnsetTime}, instead of a single value. The
number of all possible elements in a cross type is equal to
the product of the number of elements in each basic type.
A derived type depends on information extracted from a
basic type. A simple example of this is melodic intervals,
which are extracted from pitches. Derived types can use
information from more than one viewpoint, and this can
lead to the formation of cross types derived from derived
types. Selection of appropriate representations is domain
dependent and often uses prior knowledge of the music.

Here we use two basic types – strokes and durations.
We also look at the following cross types: 1) Strokes x Du-
rations and 2) Strokes x PositionInBar (PIB), where PIB
refers to the onset position of a stroke as a fraction of
the bar. Finally we introduce three derived types into the
model. These were constructed by mapping the stroke
names to a reduced set. Reduced Set 1 was made by elim-
inating different names for the same stroke, reducing the

number of symbols from 41 to 32. Reduced Set 2 ex-
tended this idea by mapping acoustically similar strokes
to the same name, which further reduced the number of
symbols to 10. The open/closed mapping was made by
classifying each stroke as resonant or non-resonant.

4.4 Merging Model Predictions

An important point here is the actual process of merging
the predictions of each of the models. Though there are
many different ways to do this, we use a weighted av-
erage as described in [15]. Each viewpoint model is as-
signed a weight depending on its cross-entropy at each
time step. The weight for each model is given by wm =
H(pm)/Hmax(pm), where H(pm) is the entropy of the prob-
ability distribution and Hmax(pm) is the maximum entropy
for a prediction in the distribution. Higher entropy values
result in lower weights. In this way, models that are uncer-
tain (i.e., have higher entropy) make a lesser contribution
to the final distribution. The distributions are then com-
bined by taking their weighted average.

4.5 Long Term and Short Term Models

A common limitation of such predictive models built on
large databases is that the model is usually unaware of
any patterns specific to a particular song. The model be-
comes too general to be effective, and very often patterns
and predictions which seem obvious to humans are missed
because they are infrequent in the global training database.
To solve this problem, we used two models: a long-term
model (LTM) built on the entire training database, and a
short-term model that starts out empty and is built up as a
particular composition is processed. In this work, the LTM
is not updated as the test composition is processed.

When a composition is read, both models return a dis-
tribution over the symbol set at each time step. The predic-
tions are merged into a final prediction using a weighted
average as described above. Whenever the STM is uncer-
tain, such as the beginning of a composition or new sec-
tion, the system gives more weight to the LTM. In other
sections, such as the end of a song, where the STM is more
certain, the weighting scheme assigns more weight to the
STM. A comparison of the cross-entropy measure for each
model is presented in Table 1.

5. EVALUATION

Cross-validation was performed using a leave-one-out de-
sign. For each of the 35 compositions, training of the
LTM was performed on the remaining 34. Reported re-
sults were averaged over all 35 trials. A common domain-
independent approach for evaluating the quality of the mod-
els’ predictions is cross-entropy [11]. If the true distribu-
tion is unknown, the cross entropy can be approximated by
− 1

n

∑n
i=1 log2(pi), which is the mean of the entropy val-

ues for a given set of predictions. To illustrate, at a given
step t, we note the true symbol. We then look at the predic-
tive distribution for symbols at step t− 1 and calculate the
entropy for the true symbol at step t. After running through

384

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Durations Strokes Stroke-
Duration

Order Priors Comb. STM LTM Priors Comb. STM LTM Priors Comb. STM LTM
1 1.891 1.049 0.916 1.890 3.614 3.184 2.958 3.613 4.965 3.883 3.397 4.962
5 1.891 0.563 0.510 0.897 3.614 1.117 0.994 1.780 4.965 1.294 1.162 2.354
10 1.891 0.469 0.429 0.814 3.614 0.868 0.814 1.609 4.965 1.060 0.995 2.220
20 1.891 0.383 0.356 0.736 3.614 0.805 0.780 1.584 4.965 1.007 0.966 2.201

Table 1. Summary of cross-entropy results for LTM, STM, and combined models for order 1-20

0 5 10 15 20 25
0

1

2

3

4

5

6

Order

Cr
os

s−
En

tro
py

Priors Combined STM LTM

Figure 2. Cross-entropy for stroke prediction using LTM,
STM, and combined models for orders 1-20

all the symbols in the test set, these entropies are averaged,
giving a cross-entropy result for that particular test set.

6. RESULTS

Figure 2 shows cross-entropy as a function of model or-
der using 1/N smoothing. The cross-entropy for the order
20 stroke LTM is 1.584, which is a surprisingly good re-
sult given the number of symbols (42). Compared with
using a predictive distribution based on the prior proba-
bility of each stroke, cross-entropy was reduced by 2.030
(from 3.614 to 1.584). The STM entropy rate for strokes
was a remarkable 0.780. Combining the LTM and STM
based on entropy, as described in section 4.3, did not im-
prove performance over the STM alone. The STM also
outperformed the LTM when predicting durations (0.365
vs. 0.736) and when jointly predicting the stroke and dura-
tion (0.966 vs. 2.201). In both cases, the combined model
offered no overall performance increase. Not surprisingly,
in some cases the LTM outperformed the STM at the be-
ginning of the composition, before the STM model had
seen much data.

As expected, cross-entropy decreases monotonically as
a function of model order. The curve decays roughly expo-
nentially, with performance improving dramatically from
order 1 to order 5, significantly between 5 and 10, and lit-
tle between 10 and 20. This suggests that, for these com-
positions, memorizing more than the past 10 strokes does

0 5 10 15 20 25
0

1

2

3

4

5

6

Order

Cr
os

s−
En

tro
py

1/N Kneser Ney

Figure 3. Comparison of Kneser-Ney and 1/N smoothing

Model Durations Strokes
Basic 0.814 1.609

Basic + SD 0.756 1.557
Basic + SD entropy 0.744 1.546
SD + PIB entropy 0.744 1.522

Table 2. Cross-types LTM where SD is stroke X duration,
and PIB is position-in-bar. Merging of models was done
using a weighted average with entropy-based weights, ex-
cept for Basic + SD, which took the simple mean

little to improve predictions. This is true for the prediction
of durations, strokes, and joint prediction of the stroke and
duration.

Figure 3 shows the effect of different smoothing tech-
niques on performance for the LTM. Both 1/N and Kneser-
Ney smoothing significantly outperform a simple backoff
method. 1/N is the clear winner for strokes, durations, and
joint prediction. The difference in the quality of prediction
decreases as the model size increases but is large through-
out. Unusually, Kneser-Ney smoothing decreases slightly
in performance as the model order is increased from 1 to
5.

Table 2 shows that cross-types had a small impact on
performance with the addition of the stroke X duration type
having the most impact.

In Table 3, we show the results for several LTM using
derived stroke types, essentially more abstract sound cat-
egories based on the stroke name. For the LTM, Reduced

385

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Derived Types Strokes
Strokes only 1.60858

Strokes + Reduced Set 1 1.83609
Strokes + Reduced Set 2 1.81989
Strokes + Open/Close Set 1.61803

Table 3. Cross-entropy for stroke prediction using derived-
types with LTM

Set 1 and 2 decreased performance by approximately 0.2,
whereas open/closed marginally improved performance.

7. DISCUSSION

These results suggest that tabla compositions can be ef-
fectively encoded using a variable length n-gram model.
Given a set of 42 stroke symbols, the best model’s cross-
entropy was 0.780, essentially meaning that it was on av-
erage uncertain between 2 strokes, a dramatic reduction
from the 42 strokes in the vocabulary, as well as from the
prior distribution which corresponded to approximately 12
strokes. Interestingly, the results suggest that tabla compo-
sitions exhibit strong local patterns that can be effectively
captured using a STM, providing significantly better per-
formance when compared with the LTM alone. Because
many tabla compositions consist of a theme and variations,
this result is not surprising. These data also suggest that it
is almost always better to only use the STM, except for the
very initial portion of the composition. Cross types seem
to lead to small improvements, whereas derived types lead
to small decreases. More experiments are needed in order
to determine whether these changes are significant.

Another important result is that smoothing can have a
large impact on predictive performance and seems to be
highly domain dependent, with 1/N outperforming KN,
a technique that had been shown to be amongst the best in
another area. It is likely that the correct balancing of model
order will depend on the database size and of course the
distribution of n-grams. It would be interesting if further
work could elucidate a clear theoretical basis for choos-
ing a given smoothing method. In the absence of this, it is
likely that performance could be improved by using a val-
idation set and by adjusting how quickly weights fall off
for interpolated smoothing techniques as the model order
decreases.

8. FUTURE WORK

As always, we plan to continue to encode more tabla com-
positions to see if these results generalize. Additionally,
we hope to test other merging methods such as geomet-
ric combinaton, a technique shown to be superior to addi-
tive combination in the context of melodies [11], as well
as implementing cross and derived types for the STM. We
also hope to use our trained models to generate novel tabla
compositions and to use human evaluators to judge their
quality. Lastly, we hope to use these results in an interac-
tive tabla system that can anticipate and respond to a tabla
improvisation.

9. REFERENCES

[1] C Ames. The Markov Process as a Compositional
Model: A Survey and Tutorial. 1989.

[2] Jean-Julien Aucouturier, Franois Pachet, and M. San-
dler. The way it sounds: timbre models for analysis and
retrieval of music signals. 2005.

[3] Stanley Chen and Joshua Goodman. An empirical
study of smoothing techniques for language modeling.
In PROCEEDINGS OF THE 34TH ANNUAL MEET-
ING OF THE ACL, pages 310–318, 1996.

[4] Parag Chordia. Automatic Transcription of Solo Tabla
Music. PhD thesis, Stanford University, December
2005.

[5] Darrell Conklin and Ian H. Witten. Multiple viewpoint
systems for music prediction. 1995.

[6] Alok E Dutta. Tabla: Lessons and Practice.

[7] Olivier Gillet and Gael Richard. Supervised and unsu-
pervised sequence modeling for drum transcription. In
Proceedings of International Conference on Music In-
formation Retrieval, 2007.

[8] David Huron. Sweet Anticipation: Music and the Psy-
chology of Expectation. MIT Press, 2006.

[9] Bel B Kippen J. Bol Processor Grammars In Under-
standing Music with AI. AAAI Press, 1992.

[10] W J Teahan John G Cleary. Experiments on the zero
frequency problem. 1995.

[11] Marcus Pearce Johnston. The construction and evalua-
tion of statistical models of melodic structure in music
perception and cognition. PhD thesis, City University,
London, 2005.

[12] Kyogu Lee. Automatic chord recognition from audio
using an hmm with supervised learning. In In Proc. IS-
MIR, 2006.

[13] C. Manning and H. Schutze. Foundations of Statistical
Natural Language Processing. MIT Press, 2002.

[14] Pearce, Herrojo Ruiz, Kapasi, Wiggins, and Bhat-
tacharya. Unsupervised statistical learning underpins
computational, behavioural and neural manifestations
of musical expectation. 2010.

[15] Marcus Pearce, Darrell Conklin, and Geraint Wiggins.
Methods for combining statistical models of music.
2004.

[16] Dietterich T.G. Ensemble methods in machine learn-
ing. 2000.

[17] Ian H. Witten and Timothy C. Bell. The zero-frequency
problem: Estimating the probabilities of novel events
in adaptive text compression. 1991.

386

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

