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ABSTRACT

A novel technique of unmasking to repair the degradation
in sources separated by spectrogram masking is proposed.
Our approach is based on explicit knowledge of the musi-
cal audio at note level from a score-audio alignment, which
we termed Informed Source Separation (ISS). Such knowl-
edge allows the spectrogram energy to be decomposed into
note-based models. We assume that a spectrogram mask
for the solo is obtained and focus on the problem of repair-
ing audio resulting from applying the mask. We evaluate
the spectrogram as well as the harmonic structure of the
music. We either search for unmasked (orchestra) partials
of the orchestra to be transposed onto a masked (solo) re-
gion or reshape a solo partial with phase and amplitude
imputed from unmasked regions. We describe a Kalman
smoothing technique to decouple the phase and amplitude
of a musical partial that enables the modification to the
spectrogram. Audio examples from a piano concerto are
available for evaluation.

1. INTRODUCTION

We address the “desoloing” problem, in which we attempt
to isolate the accompanying instruments in a monaural record-
ing of music for soloist and orchestral accompaniment. The
motivation is to produce the audio of the accompaniment
part for concertos in the “classical” domain as well as the
karaoke in popular music, whereas the ultimate goal is to
have the orchestra adapt timing to the live player, a prob-
lem we do not discuss there. Nevertheless, the accompa-
nying audio is needed and we offer solutions through our
demixing or isolation of the original sources (instruments).

Most past effort in this “source separation” problem treats
Blind Source Separation (BSS) problems and assumes lit-
tle knowledge of the audio content rather than the indepen-
dence of the sources [1] or relies on general cues of musical
sources rather than the content of the sources [2]. In con-
trast, we assume explicit knowledge in the form of a score
match, which establishes a correspondence between the
audio data and a symbolic score representation giving the
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onset times of all musical events. See Figure 1 for an ex-
ample. Such correspondence, known as “score following”
or “alignment”, initially introduced and developed by Ver-
coe and Dannenberg [12] is the foundation of our approach
which we termed Informed Source Separation (ISS). Other
examples in the category of ISS include Dubnov [6].

Figure 1. Piano note onsets (vertical lines) of an excerpt
from 2nd mvmt. of Ravel’s piano concerto in G

In our approach, we begin by masking the short time
Fourier transform (STFT) in an attempt to “erase” the soloist’s
contribution. We also based our exploration toward partial-
wise phase/amplitude relationship on previous work [7]
in which spectrogram magnitude is decomposed into each
partial by fitting note-based models. [11] is another ef-
fort of spectrogram decomposition in speech. However,
our emphasis here is not on estimating the mask or fitting
note models, but on employing a novel set of procedures
(see sect. 5) that estimates and transforms note partials,
in which the damage caused by our masking procedure is
repaired.

Here our assumption is that there is information redun-
dancy in terms of phase and amplitude between the “ob-
servable” partials (i.e. not significantly overlapped by the
solo or an accompaniment instrument of a different family)
and damaged partials. Our hope is to “copy and paste” mu-
sical partials from the observable area to the damaged area
with some necessary transformations that exploit those re-
dundancy to maintain the consistency between the observ-
able and the damaged. These procedures can be automated
by analyzing the texture of the music from the score and
testing the soundness of remaining partials on the desoloed
spectrogram. We call this process unmasking in which the
masked-out solo regions will be recovered.

315

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



The structure of this paper is as follows: we briefly for-
mulate the masking problem in sect. 2, followed by note-
based parameterization in sect. 3 and phase estimation in
sect. 4. Such estimating enables our repair-by-unmasking
technique in sect. 5 which is applied in the context of a
piano concerto in sect. 6.

2. SPECTROGRAM MASKING OF THE SOLO

Given our original audio signal, x(s), we define the short
time Fourier transform (STFT) by

X(t, k) =
N−1∑
n=0

x(tH + n)w(n)e−2πjkn/N

where H is the hop size, N is the window length and w
is the window function. We will define our masking op-
eration in this STFT domain. To do so, we estimate two
“complementary” masks, 1s(t, k), and 1a(t, k), taking val-
ues in {0, 1} with 1s(t, k)+1a(t, k) = 1. These masks are
used to isolate the parts ofX we attribute to the soloist and
accompaniment through

Xs(t, k) = 1s(t, k)X(t, k) (1)

Xa(t, k) = 1a(t, k)X(t, k) (2)

In other words we label each time-frequency “cell” (t, k)
as either solo or accompaniment. Since our focus here is
on the unmasking problem, we will bias our labeling of
each time-frequency cell toward the solo category, since
we want to make sure the original soloist is completely re-
moved. Using our score match, it would be relatively easy
to simply draw a rectangle around each solo partial while
calling the interior of these rectangles our solo mask. Our
approach is somewhat more sophisticated, employing spe-
cial treatment of the wide spectral dispersion associated
with note onsets by Ono et al. [13], as well as careful mod-
eling of the steady state partials. However, we will not
discuss this mask estimation problem here.

While Xa(t, k) (and Xs(t, k)) is, in general, not the
STFT of any time signal, applying the inverse STFT opera-
tion gives perceptually sufficient results with appropriately
defined STFT. In particular, if we use a Hann window with
H = N/4, one can show that applying the STFT inverse
to Xa results in the audio signal whose STFT is closest to
Xa in the sense of Euclidean distance [5].

The result of this process elimanates more than the soloist,
of course, since the accompanying instruments also con-
tributed to the STFT in the region we have masked out. A
possible remedy in sect. 4 is the main focus of our paper.

3. NOTE-BASED MUSIC PARAMETERIZATION

In this section we briefly review our parameterization of
the music given the score, which is adapted from our tech-
nique to decompose the spectrogram magnitude into note
models in [7]. This parameterization is also used to facili-
tate our phase estimation in sect. 4.

From the score, suppose we have a collection of notes
N in the piece of interest, for a note n ∈ N , we know its

instrumentation in ∈ I where I is the set of instruments in
this piece and can be further partitioned into disjoint sub-
sets Is and Ia for solo and accompaniment instruments
separately.

Moreover, we know the time span of note n: Tn =
{tonn , . . . , toffn } from the score following. Also, as the
note pitch pn indicates its set of valid harmonics under a
certain Nyquist frequency: Hn = {1, . . . ,Hn}, we con-
fine the frequency bin span of each partial h ∈ Hn to
Kn,h = {klown,h , . . . , k

high
n,h }. Kn,h implements a band-pass

filter to specify a frequency bin span where the contribu-
tion from the partial of interest (very likely to be mixed
with other partials of close frequencies) is significant in
terms of spectrogram magnitude while the spectral energy
outside of Kn,h is ignored.

Such 2-dimensional, rectangular time-bin supportBn,h =
{(t, k)|t ∈ Tn, k ∈ Kn,h} specifies a band-passed filter
bank over Tn to extract time domain partial ph(s) from
X(t, k) We denote Bn = Bn,1 ∪ . . . ∪ Bn,Hn

to be the
support for all harmonic components of note n.

We then assume a Normal mixture model for the spec-
trogram magnitude of an orchestra note n: each harmonic
of the note is one Gaussian component in the mixture with
normalized weight νn,h, coupled frequency bin expecta-
tion µn,h(t) = hµn,1(t), and unknown variance σ2

n,h. To
accommodate the (possibly dramatic) change in amplitude
over time of a note, we also introduce a normalized non-
negative profile, ηn,h(t), to outline the frame-wise ampli-
tude of hth partial of nth note.

Strictly, the centroid of each partial may not be precisely
coupled by µn,h(t) = hµn,1(t). But it is approximately
true for all the instruments except for piano in our study.
To summarize:

• a weight νn,h > 0 for ∀(n, h) with
∑
h∈Hn

νn,h = 1

• a time support Tn = {tonn , . . . , toffn }, which is shared
among all partials of note n

• an amplitude envelope ηn,h(t) > 0 for ∀(n, h) with∑
h∈Hn

ηn,h(t) = 1

• a frequency bin support Kn,h = {klown,h , . . . , k
high
n,h }

• a frequency bin centroid µn,h(t) which reflected the
frequency of partial h at t. Among different partials,
they are coupled by µn,1(t) = µn,h(t)

h

• a frequency bin variance σn,h that describes mag-
nitude distribution of partial h over frequency bins
with expectation µn,h(t) under Normal assumption.

Finally we can define a“template” function qn,h(t, k)

=


0, ∀(t, k) : t /∈ Tn or k /∈ Kn,h

νn,hηn,h(t)f(k;µn,h, σ2
n,h); otherwise

(3)

where f(k;µn,h, σ2
n,h) is the normal density function. This

parameterization is subjected to normalization to ensure∑
h∈Hn

∑
(t,k)∈Bn,h

qn,h(t, k) = 1 for note n.

316

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



Figure 2. Wrapped and Unwrapped Phase

Our assumption is that the magnitude contribution from
each note partial indexed by (n, h) to the spectrogram is
raised from a collection of independent Poisson random
variables {Zn(t, k)} for (t, k) ∈ Bn [3]. The expectation
of Zn(t, k) is δn

∑
h qn,h(t, k) where δn describes the de-

gree to which Zn(t, k) contributes to X(t, k). Intuitively,
δn is our estimate of the total spectrogram magnitude con-
tribution from note n and can be interpreted as the overall
“amplitude” of the note n. The estimation of δn is, no
doubt, a significant factor of source separation quality and
our solution by an EM algorithm is documented in [7]. For
the rest of the paper, we assume a somewhat reliable δn
is known so we can focus on the unknown phase of each
partial of note n.

4. PARTIAL-WISE PHASE ESTIMATION AND
TRANSFORMATIONS

As usually only a subset of partials of a note is damaged
by removing the solo partial, we hope to exploited the har-
monicity assumption in wind and string instruments sup-
ported by Fletcher [9] and Brown [10] to impute the phase
of those missing partials in the orchestra. To do so, we
first introduce a generic method to decouple the phase and
slow-changing amplitude of a band-limited signal in 4.1
which enables our two major tools to “unmask” the dam-
aged spectrogram: harmonic transposition in 4.2 and phase-
locked modulation in 4.3.

4.1 Phase Estimation by Kalman Smoothing

In this section we represent our note partial, ph(s), in terms
of a time-varying amplitude and phase:

ph(s) ≈ αh(s) cos(θh(s))

where the time-varying amplitude, αh(s), is non-negative
and varies slowly compared with ph(s), and the “unwrapped”
phase (see Figure 2) function, θh(s), is monotonically non-
decreasing. A more precise review of the slow-changing
αh(s) in a sinusoidal model is given by Rodet [14].

In order to estimateαh(s) and θh(s) we follow the model
of Taylan Cemgil [8] and view the harmonic, ph(s), as the
ouput of a Kalman filter model [16] [17]. To this end we
define a sequence of two-dimensional state vectors {x(s) =
(x1(s), x2(s))t} where x1(0) and x2(0) are independent

0-mean random variables with variance γ2, and the re-
maining variables follow evolution equation x(s + 1) =
Ax(s) + w(s) where {w(s)} is an independent sequence
of 0-mean 2-dimensional vectors with independent com-
ponents of fixed variance (the variance can be tuned em-
pirically). A is the rotation matrix, defined in terms of the
expected phase advance per sample, ρ, which is directly
computable from the nominal frequency of the partial:

A =
(

cos ρ sin ρ
− sin ρ cos ρ

)
Thus, x(s) is a sequence of vectors that circle around the
origin and an approximately known frequency with vari-
able distance from the origin. We then model our observed
partial as ph(s) = x1(s) + v(s) where {v(s)} is another
sequence of independent 0-mean variables with a certain
variance (this variance is tuned empirically too).

It is well known that the Kalman filter allows straight-
forward computation of the conditional distribution, p(x(s)|{ph(s′)}),
and that this distribution is Normal for each value of s.
Thus we estimate x(s) by x̂(s) = E(x(s)|{ph(s′)}). The
representation of the partial in terms of amplitude and non-
decreasing phase follows from the polar coordinate repre-
sentation of x̂(s):

αh(s) =
√
x̂2

1(s) + x̂2
2(s)

θh(s) = 2πk(s) + tan−1(
x̂2(s)
x̂1(s)

)

where each k(s) is chosen to be the non-negative minimal
integer value that ensures that θh(s) is non-decreasing.

Note that for phase sequence θh(s), s ∈ {1, . . . , S}, not
only the final phase estimate θ̂h(S) but also all previous
phase estimates are of interest. To get the “best” phase es-
timation, we need to update the state estimates backward
to incorporate the observation that were not “available”
at sample s in the forward pass. This motivates Kalman
smoothing (see chapter 5 of [17]) which calculates the smoothed
phase estimate θ̂h(s) recursively backward from the last
sample at S.

4.2 Harmonic Transposition

With amplitude αh(s) and phase θh(s) decoupled from
hth harmonic of a note, we are ready to “project” one har-
monic into a different harmonic while maintaining the har-
monicity between the source and the destination. Suppos-
ing we estimated the unwrapped phase of the ith harmonic
as θi(s), the “projected” phase sequence at jth harmonic is
given by θ̃j(s) = jθi(s)

i and the resulting jth harmonic by

p̃j(s) = α̃j(s) cos(
jθi(s)
i

) (4)

where α̃j(s) is either known or imputed amplitude at jth
harmonic. In this work, we usually have an estimate of
α̃j(s) by scaling δn from sect. 3.

Our harmonic transposition exploit such “harmonicity”
between partials, which is a well-studied phenomenon. Early
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Figure 3. Unwrapped Phase Difference

work mainly by Fletcher showed that frequencies of the
partials in“the middle portion of the tone” of string instru-
ment are integral multiples of the fundamental frequency
by using sonograph and also derived that partials of string
and wind instrument are “rigorously locked into harmonic
relationship” [9]. By using single frame approximation on
a variety of digital samples, Brown concluded that “con-
tinuously driven instruments such as the bowed strings,
winds, and voice have phase-locked frequency components
with frequencies in the ratio of integers to within the cur-
rently achievable measurement accuracy of about 0.2%”
[10] from experiments with and without vibrato.

To demonstrate such harmonicity in our framework, we
focus on the “projection” of the unwrapped phase θi(s)
from partial i to partial j by

θi,j(s) =
jθh1(s)

i
(5)

By “projecting” the phase of different partials to a com-
mon harmonic, we can examine such phase relation on a
variety of orchestra instruments. We can visualize pair-
wise phase difference θi,1(s) − θj,1(s) at the fundamental
for any i 6= j. Figure 3 shows the pairwise phase differ-
ence for the first 4 notes from a performance of the first
movement of Stravinsky’s Three Pieces for Clarinet Solo.
The salient message from this plot is: the pairwise phase
difference is in a very small range (mostly (−π2 ,

π
2 )) and

never drifts away over the entire note; the error (including
measurement error and true difference) is not accumula-
tive. This supports our approximation of phase coherence.

Piano and other impulsively driven instruments such as
strings played pizzicato are counter-examples whose par-
tials deviate from integer ratios due to the stiffness of the
string [10].

4.3 Phase-locked Modulation

In addition to the partial-wise relationship, we want to ex-
ploit timewise similarity in terms of phase and amplitude
within one note.

Suppose we have a partition T1 = {s1, . . . , sk − 1},
T2 = {sk, . . . , s2} on the sample indices T = {s1, . . . , s2}
of the sustaining part of a reasonably long orchestra note,
we can only observe the unwrapped phase sequence at θh(T1)
but θh(T2) is missing. We can impute θh(T2) sequentially
by

θh(sk+n) = θh(sk+n−1)+θh(s1 +1+n)−θh(s1 +n)
(6)

for any 0 ≤ n ≤ s2 − sk. We omit the formula to obtain
θh(T1) if we observe θh(T2).

This operation preserves the phase advance per sample
in T1 and applies such ∆θh(T1) cyclically to T2. This is
similar to the phase vocoder except for that we are doing
it on the sample level rather than frame level. For a long
enough time span T1, we are capturing the pattern of fre-
quency fluctuation in θh(T1). To synthesize a segment of
a partial, we also need the amplitude envelope over T2.
A simple solution is to reuse the average amplitude αh
over T1 (with some minor modulation) to “sustain” a note
through the end of T2. If the orchestra note is holding for
quite long, which is common in some orchestration, we are
effectively synthesizing the sustaining part of the partial.

5. SPECTROGRAM UNMASKING

In an attempt to fix the damage caused by desolo, we ex-
amine the spectrogram with a focus on areas where the ac-
companiment notes (harmonics) are damaged.

In the type of music that we (and many solo musicians)
are mainly interested in, for instance, a piano concerto, it
is common that a string section may double the solo in-
strument at the unison, fifth, or octave in either direction.
In these cases, masking out the solo part usually results in
many damaged partials in the orchestra since consonant in-
tervals mean more partials are likely to share the same fre-
quencies. With this in mind, we use some heuristics to cre-
ate an algorithm to automatically perform the two partial-
wise transformations developed in 4.2 and 4.3. Since the
texture of the music can be highly complex, we reconstruct
a somewhat “generic” scenario for illustration of this algo-
rithm in Figure 4. The 1-bar score in the figure is a re-
duction from a piano concerto where the piano part is fre-
quently doubled by the lower string sections.

Supposing we have obtained solo mask 1s(t, k), a dam-
aged region Bdn,h ⊆ Bn,h, a template gn,h(t, k) and an
amplitude estimate δn from section 2 and 3 for a damaged
partial h of note n, we summarize our heuristic algorithm:

First, we need to evaluate the damage. If∑
(t,k)∈Bd

n,h
gn,h(t, k)�

∑
(t,k)∈Bn,h

gn,h(t, k),
we leave it as intact; otherwise we need to repair it. Spe-
cially, if undamaged part Bn,h r Bdn,h is a narrow band-
limited “strip” (e.g. a single frequency bin), we need to
“expand” the solo mask to remove those initially deemed
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Figure 4. Evaluating Desolo Damage and Possible Fix Using Both Score and Spectrogram

“undamaged” f-t cells as well because such residue tends
to create artifact “musical noise” whose suppression de-
serves treatment, mostly from speech enhancement. After
such extra “masking”, we use Bun,h ⊆ Bn,h to denote the
remaining undamaged region.

Second, since Bn1,h1 ∩ Bn2,h2 6= ∅, n1 6= n2 for pos-
sibly many different note partials contributing energy to
the same region, we choose one damaged orchestra partial
(n, h) to repair: argmax

(n,h)

∑
(t,k)∈Bn,h

δngn,h(t, k) assum-

ing Max-Approximation that only one signal dominates in
each time-frequency cell [3].

Third, in the score we look for consonant intervals such
as octaves, perfect 5th and perfect 4th in the hope to find an
observable partial whose frequency is in a relatively sim-
ple ratio to the damaged one waiting to be “transposed” to.
We call this partial, if exists, a candidate. Usually more
than one candidate exist. Large modulus value, simple fre-
quency ratio and identical instrumentation are factors that
we favor in choosing the best candidate without creating
artifacts. Thus, harmonic transposition can be performed
vertically on the spectrogram (e.g. from 3rd to 5th har-
monic of viola note B3 in Figure 4) if the duration of the
candidate partial covers that of the damaged area.

Fourth, when there is no candidate partial for the par-

tial indexed by (n, h), if there exists a partial (m, i) whose
time support of its undamaged portion Tum,i is adjacent to
the damaged duration T dn,h and whose frequency bin sup-
port Km,i satisfies Kd

n,h ⊆ Km,i we can perform phase-
locked modulation with differenced phase sequence esti-
mated from Bum,i to Bdn,h. The 2 cello partials in Figure 4
are repaired this way.

Occasionally, we are unable to perform either transfor-
mation and label the damaged partial as such.

6. EXPERIMENT RESULTS

We experiment with an excerpt of 45 seconds from the 2nd
movement of Ravel’s piano concerto in G major.

Table 1 lists a breakdown of the number of partials 1

and the number of harmonic transpositions and phase-locked
modulation that our algorithm performed. The last column,
“unable to fix” gives the number of occurrences that no
undamaged orchestra partial is available to estimate phase
from. We relax on that the 4 sections of string instruments
can be used to repair each other by harmonic transposition
but do not allow any harmonic transposition between two
different instruments in the woodwind family. This is be-

1 the number of partials only include partials that have significant spec-
tral energy and are below Nyquist frequency at SR=8000Hz.
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note partial tran.
from

tran.
to

modu-
lation

unable
to re-
pair

oboe 20 85 1 1 0 1
clarinet 6 18 3 3 0 0
flute 6 18 0 0 0 0
violin1 5 42 14 9 0 0
violin2 11 107 34 24 24 2
viola 16 160 33 41 64 5
cello 12 120 43 50 22 6

Table 1. Instrument breakdown of partials being repaired

cause the oboe is sharper than the other two in this excerpt.
At the end the most of damaged partials are fixed in some
way. We also notice that the woodwinds are less damaged
because the notes are very high pitched and too loud to
yield to the solo piano at their time-frequency region, while
the lower string instruments are frequently damaged.

The original, desoloed-but-unrepaired and repaired au-
dio are available at our demo website http://xavier.
informatics.indiana.edu/˜yushan/ISMIR2010
to evaluate the solo mask and improvement from unmask-
ing. Plots in color giving a breakdown of the partials on
the spectrogram are also available.

7. CONCLUSION, EVALUATION AND FUTURE
WORK

Instead of merely extracting one source (instrument) of
sound from the mixture, we distinguish our proposed ISS
method from other known source separation methods by
our explicit repair stage that addresses the audio degrada-
tion caused by the separation procedure. This stage signif-
icantly enhances the perceptual audio quality and boosts
performance measurement such as distortion due to inter-
ferences proposed by Vincent. That the reconstructed note
sounds plausible for some orchestra instruments suggests
that the partial-wise phase/amplitude relationship is a po-
tentially fruitful topic to investigate.

At this stage, we admit that the comparison of our method
of “unmasking” with other missing data inference tech-
niques such as [15] is not available and hence is our future
work. An ideal evaluation of any method of solo/orchestra
separation requires a “ground truth” of the two sources
recorded separately and an artificial mix of the two. How-
ever, such “ground truth” is almost away absent in the real
case and the evaluation is mainly subjective. Our explo-
ration begins with a music sample library to artificially
construct ground truth according to the score while main-
taining the texture of the music of interests.
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