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ABSTRACT

This paper proposes using acoustic information in the la-

belling of music piece structure descriptions. Here, mu-

sic piece structure means the sectional form of the piece:

temporal segmentation and grouping to parts such as cho-

rus or verse. The structure analysis methods rarely pro-

vide the parts with musically meaningful names. The pro-

posed method labels the parts in a description. The base-

line method models the sequential dependencies between

musical parts with N-grams and uses them for the labelling.

The acoustic model proposed in this paper is based on the

assumption that the parts with the same label even in dif-

ferent pieces share some acoustic properties compared to

other parts in the same pieces. The proposed method uses

mean and standard deviation of relative loudness in a part

as the feature which is then modelled with a single multi-

variate Gaussian distribution. The method is evaluated on

three data sets of popular music pieces, and in all of them

the inclusion of the acoustic model improves the labelling

accuracy over the baseline method.

1. INTRODUCTION

This paper proposes a method for providing musically mean-

ingful labelling to sectional parts in Western popular music

using two complementary statistical models. The first one

relies on the sequential dependencies between the occur-

rences of different parts, while the second models some

acoustic properties of the them. A labelling method us-

ing the sequence model was proposed earlier by Paulus

and Klapuri [9] and this paper proposes an extension that

method by including also acoustic information.

In sectional form a music piece is constructed from shorter,

possibly repeated parts. Especially many Western pop/rock
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pieces follow this form. The parts can be named accord-

ing to the musical role they have in the piece, for example,

“intro” is in the beginning of the piece and provides an in-

troduction to the song and “verse” tells the main story of

the song. Music piece structure analysis aims to provide

a description of the sectional form of the piece based on

the acoustic signal. Usually the description consists of a

temporal segmentation of the piece to occurrences of parts,

and of grouping of segments being occurrences of the same

part. For a review of methods proposed for the task, see

the book chapter by Dannenberg and Goto [2] or the dis-

sertation by Paulus [8]. With the exception of few meth-

ods [6,14], most structure analysis methods do not provide

the segment groups with musically meaningful label, in-

stead they only provide a tag for distinguishing the differ-

ent groups. However, if the analysis result is presented for

a user, providing also meaningful labels for the segments

would be valued, as noted by Boutard et al. [1].

A method for musical part labelling given the descrip-

tion with arbitrary tags was proposed by Paulus and Kla-

puri [9]. It relies on the assumption that musical parts have

sequential dependencies which are then modelled with N-

grams. The method searches for the labelling that max-

imises the overall N-gram probability over the resulting

label sequence. The obtained results indicate that such a

model manages to capture useful information of the music

piece structures. This paper proposes to extend that work

by including acoustic information in the process. This is

motivated by the frequently encountered assumption that

the chorus is louder than the other parts. It should be noted

that this paper does not discuss the underlying problems in

defining the structural description that have been discussed

by Peeters and Deruty [11], but instead studies the perfor-

mance of the proposed models in replicating the labelling

in the manual annotations.

The rest of this paper is organised as follows: Sec. 2

describes the labelling problem more formally, revisits the

sequential modelling baseline method, and details the pro-

posed acoustic modelling method. Sec. 3 describes the ex-

periments for evaluating the proposed method and presents

the obtained results. Finally Sec. 4 provides the conclu-

sions of this paper.
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2. PROPOSED METHOD

This section provides a more formal definition of the la-

belling problem, provides a short description of the base-

line method relying only on sequence modelling, and de-

tails the proposed acoustic modelling extension.

2.1 Labelling Problem

The input to the method consists of a music piece descrip-

tion and the acoustic signal. The description itself is a tem-

poral segmentation of the piece and a grouping of the seg-

ments. Each of the groups is assigned with a unique tag r.

When the K tags in the description are organised into a se-

quence based on the temporal locations of the segments, a

tag sequence r1:K ≡ r1,r2, . . . ,rK is obtained. The problem

of label assignment is to find an injective 1 mapping

f : R → L (1)

from the set R of tags present in the description to the set

L of musically meaningful labels. Application of the map-

ping is denoted with

f (r) = l, (2)

and it can be done also on sequences:

f (r1:K) = l1:K . (3)

Since any injective mapping is a valid mapping from tags

to labels, the problem is to select the “best” mapping from

all the possible choises. The earlier publication [9] pro-

posed a statistical sequence model for the the labels l for

selecting the mapping producing the highest model proba-

bility. This paper proposes to include acoustic information

to the process of selecting the mapping function.

2.2 Markov Model Baseline Method

Some sectional forms are more common in music than the

others. An example of this was presented in [9] where it

was noted that almost 10% of the songs by The Beatles

have the form “intro”, “verse”, “verse”, “bridge”, “verse”,

“bridge”, “verse”, “outro”. Though this cannot be directly

generalised to all pieces, some sequences of parts occur

more frequently than others and this can be utilised in the

labelling.

In sequence modelling the prediction problem is to pro-

vide probabilities for the possible continuations of a given

sequence. p
(
si|s1:(i−1)

)
denotes the conditional probabil-

ity of si to follow the sequence s1:(i−1). Markov models

make the assumption that the process has a limited mem-

ory and the probabilities depend only on a limited length

history. The length of the history is parametrised with N

which provides a motivation for the alternative name of

N-grams. An N-gram of length N utilises N − 1th order

Markov assumption

p
(
si|s1:(i−1)

)
= p

(
si|s(i−N+1):(i−1)

)
. (4)

1 All tags in input sequence are mapped to a label, but each tag can be
mapped only to one label and no two tags may be mapped to same label.

Given a sequence s1:K and the conditional N-gram proba-

bilities the total probability of a sequence can be calculated

with

p(s1:K) =

K

∏
i=1

p
(
si|s(i−N+1):(i−1)

)
. (5)

For more information on N-grams and language modelling,

see [5].

The baseline method proposed by Paulus and Klapuri [9]

calculates N-grams using the musical part labels as the al-

phabet L, and then locates the mapping fOPT maximising

the overall sequential probability of (5) while conforming

to the injectivity constraint:

fOPT = argmax
f

{pL ( f |r1:K)} , f : R → L injective. (6)

In (6) pL ( f |r1:K) denotes the Markov probability of the

sequence resulting from applying the mapping f

pL ( f |r1:K) = p( f (r1:K)). (7)

The combinatorial optimisation problem of (6) can be

solved, e.g., in a greedy manner by applying a variant of N-

best token passing algorithm proposed in [9], or by apply-

ing the Bubble token passing algorithm proposed in [10].

Both operate on the same basic principle of creating a di-

rected acyclic graph from the parts and possible labellings,

and searching a path through it. Each part in the sequence

is associated with each possible label and these combina-

tions form the nodes of the graph. Edges are created be-

tween parts that are directly consecutive in the input se-

quence. Paths through the graph represent label mappings,

and the path with the highest probability is returned as the

result. Even though the search does not guarantee find-

ing the optimal solution, in small experiments it found the

same solution as an exhaustive search with a fractional

computational cost. Viterbi or similar more efficient search

algorithm cannot be employed here as the mapping has to

respect the injectivity and the whole sequence history af-

fects the probabilities instead of only the limited memory

of N-grams.

2.3 Sequence Modelling Issues

The number of conditional probabilities p
(
si|s1:(i−1)

)
that

need to be estimated for N-gram modelling increases rapidly

as a function of the model order N and the alphabet size V :

there are V N probabilities that need to be estimated. Usu-

ally, the probabilities are estimated from a limited amount

of training data, and not all probabilities can be estimated

reliably. This problem can be partly alleviated by applying

smoothing to the probabilities (assigning some of the prob-

ability mass of the more frequently occurring combinations

to the less frequent ones), or by discounting methods (esti-

mating high-order models as combinations of lower-order

models). Variable-order Markov models (VMMs) [13] at-

tempt solving the model order problem based on the train-

ing data by setting the order independently to different sub-

sequences. In other words, if increasing the model order

does not bring more accurate information, it is not done.
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2.4 Acoustic Modelling Method

The baseline method operates only on the sequential in-

formation of the musical parts and has no information of

the actual content of them. However, if the acoustic signal

is available, it can be utilised in the labelling. Naturally,

the parts of a song differ from each other in view of the

acoustic properties. This is closely related to the definition

of sectional form. However, the assumption made here is

that there exists acoustic properties that exhibit similar be-

haviour in large body of the pieces, e.g., it is often stated

that “chorus” is the most energetic, or the loudest, part in

a song. In addition to “chorus” being most energetic, very

few other parts can be said to have any typical acoustic

property. Still, e.g., “break” or “breakdown” often has con-

siderably reduced instrumentation, thus it is expected that

it exhibits a lower average loudness than the other parts.

Despite this, the acoustic modelling is applied to all parts

even though is might not produce meaningful information

for all labels.

The proposed acoustic modelling represents the acous-

tic information by associating a single observation vector

xi to each of the musical parts, thus utilising a highly con-

densed representation. The input to the labelling now con-

sists of the tag sequence r1:K and acoustic observations

x1:K , one vector xi for each part. The acoustic model con-

siders now the likelihoods pA (xi|l) of observing xi if the

musical part label is l. The overall likelihood of the map-

ping definition f in view of the acoustic observations x1:K

is now calculated with

pA ( f |r1:K ,x1:K) =

K

∏
i=1

pA (xi| f (ri)) . (8)

2.5 Combined Method

Assuming statistical independence, combining the two mod-

els (7) and (8) in the same function produces a new likeli-

hood function for the mapping f

p( f |r1:K ,x1:K) = p(x1:K | f (r1:K)) p( f (r1:K)) (9)

=

K

∏
i=1

p(xi| f (ri))

K

∏
i=1

p
(

f (ri)| f (r1:(i−1))
)
, (10)

where the first term is from the acoustic observations and

the latter from the N-gram models. The labelling problem

can be expressed as the optimisation task

fOPT = argmax
f

{p( f |r1:K ,x1:K)} , f : R → L injective.

(11)

The optimisation of (11) can be done with the same al-

gorithm as the optimisation of the sequential model alone.

The only required modification is to include the acous-

tic observation likelihoods. It should be noted that even

though the problem resembles hidden Markov model de-

coding, the injectivity requirement violates the Markov as-

sumption thus prohibiting the use of Viterbi decoding.

2.6 Acoustic Features

As the assumption about the globally informative acous-

tic property was related to the energy level or loudness,

LOUDNESS LOUDNESS DEVIATION

chorus

verse

bridge

intro

pre-verse

outro

c

theme

solo

chorus_a

a

chorus_b

MISC

0.60.6 0.80.8 1.01.0 1.21.2 1.41.4 1.6 1.8

Figure 1. Statistics of the features used in data set TUT-

structure07. The mean of all occurrences of the part is in-

dicated with circle and the surrounding error bars illustrate

the standard deviation over the occurrences. Note that the

mean loudness of “chorus” and it’s variations support the

original assumption.

they were tested for the acoustic modelling. The energy

is measured by calculating the root-mean-squared value of

the signal within the part. However, in preliminary exper-

iments it was noted that using perceived loudness instead

produced better results. This is presumably because the

loudness calculation addresses also the non-linear proper-

ties of human auditory system in amplitude, frequency, and

temporal dimensions, the main difference being in the dy-

namic amplitude scale compression from representing the

data in logarithmic decibel scale. 2 The calculation is done

using the function ma_sone from the MA Toolbox by Pam-

palk [7]. The loudness is calculated in 11.6 ms frames with

50% overlap and the part loudness is approximated by the

mean loudness of the frames within the part in question.

In addition to the mean loudness also standard deviation

of the framewise loudness values over the part is used to

describe the dynamics of the signal. The features are nor-

malised by dividing them by the mean over the piece mak-

ing the mean over the piece to be 1. An illustration of the

feature distributions is provided in Fig. 1.

The acoustic observation likelihoods pA (x|l) are mod-

elled as a single multivariate Gaussian distribution

pA (x|l) =
1

√
(2π)D|Σ|

exp

(

−
1

2
(x−µ)TΣ−1

(x−µ)

)

,

(12)

where D is the feature vector dimensionality, Σ and µ are

the covariance matrix and mean vector of the estimated dis-

tribution of the part label l.

2 The preliminary experiments included also acoustic features corre-
sponding to the brightness (spectral centroid) and bandwidth of the sig-
nal. The various combinations of different features were tested and based
on the results of the small-scale experiments, the set used was limit to
loudness and it’s deviation.
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3. EVALUATIONS

The proposed extension is evaluated with three data sets of

popular music pieces. The first set TUTstructure07 con-

sists of 557 pieces from various genres, mainly from pop

and rock, but including also pieces from metal, hip hop,

schlager, jazz, blues, country, electronic, and rnb. The

pieces have been manually annotated at Tampere Univer-

sity of Technology (TUT). 3 The second data set UPF Bea-

tles consists of 174 pieces by The Beatles. The piece forms

were analysed by Alan W. Pollack [12], and the part time

stamps were later added at Universitat Pompeu Fabra (UPF)

and TUT. 4 The third data set RWC pop contains 100 pieces

from the Real World Computing Popular Music collec-

tion [3, 4] aiming to represent typical 1980’s and 1990’s

chart music from Japan and USA.

3.1 Evaluation Setup

Since the ground truth annotations in the data sets originate

from different sources, the used labels also differ. For this

reason the evaluations are run separately for each data set.

The data sets contain relatively large number of unique part

labels (e.g., TUTstructure07 has 82 unique labels) some of

which occur very rarely making the modelling more dif-

ficult. To alleviate this problem only the most frequent

labels contributing to 90% of all part occurrences are re-

tained, and the rest are replaced with an artificial label

“MISC”. This reduces the number of labels considerably

(e.g., to 13 in TUTstructure07). The evaluations are run

in leave-one-out cross-validation scheme and the presented

results are calculated over all folds.

The performance is evaluated with per-label accuracy,

which is the ratio of the sum of durations of correctly iden-

tified label occurrences to the sum of durations of all oc-

currence of the label, calculated over the entire data set.

Similarly, the total accuracy describes how much of the

entire data set duration is labelled correctly, effectively ap-

plying weighting to the more frequently occurring labels,

such as “chorus”.

It should be noted that the segmentation to the input tag

sequence r1:K is obtained from the ground truth annota-

tions instead of an automatic signal-based analysis method.

This is done to be enable evaluating the accuracy of the

labelling method independent of the segmentation perfor-

mance.

The complementary aspects of the proposed method are

evaluated: sequence modelling alone (effectively repro-

ducing the results from [9]), acoustic modelling alone, and

the two combined. The sequence modelling is attempted

with N-gram length of 1 to 5 (from only prior probabilities

to utilising history of length 4), and with a variable-order

Markov model. The VMM method employed was decom-

posed context tree weighting after the earlier results, and

3 A full list of pieces is available at http://www.cs.tut.fi/sgn/
arg/paulus/TUTstructure07_files.html.

4 The annotations are available at http://www.iua.upf.edu/

%7Eperfe/annotations/sections/license.html, and including
some corrections at http://www.cs.tut.fi/sgn/arg/paulus/

structure.html#beatles_data.

the implementation was from [13]. These results operate

as the baseline on top of which the acoustic modelling is

added. The sequence modelling choises were done to fol-

low the experiments in the earlier paper, thus providing a

clear baseline for comparing the effect of the added acous-

tic model.

3.2 Results

The evaluation results are presented in Tables 1–3, each

table containing the results for a different data set. The

column denoted with “N=0” provides the result for using

only the proposed acoustic model, while the other columns

contain the results of the combined modelling with differ-

ent N-gram lengths. The results of using only the sequence

model are provided in parentheses.

The results indicate that including the acoustic informa-

tion into the labelling model improves the result in some

cases. In all data sets the best overall result is obtained by

including the acoustic information, though the improve-

ment in UPF Beatles is so small that it may not be sta-

tistically significant. 5 The same relatively small obtained

improvement is observed in the results for individual labels

in UPF Beatles. This may be because the pieces are from

a single band mainly from the 1960’s and thus may not ex-

hibit all the stereotypical properties found in more modern

pop music, as noted also by Peeters [11]. The improvement

in TUTstructure07 is slightly larger. It is assumed that the

lower impact of the acoustic model is partly caused by the

large variety of musical styles present in the data, thus the

modelling assumption may not hold in all cases. The im-

provement due to the inclusion of the acoustic model is

most prominent with the RWC pop data which represents

more typical chart music.

4. CONCLUSIONS

This paper has presented a method for assigning musically

meaningful labels music piece structure descriptions. The

baseline method utilises the sequential dependencies be-

tween musical parts. This paper proposes a simple acoustic

model for the labelling and combines it with the sequential

modelling method. The proposed method is evaluated on

three data sets of real popular music. The obtained results

support the original assumption that musical parts differ in

their loudness, and the acoustic information alone can be

used to some extent to label the parts. The acoustic in-

formation alone has the labelling performance in par with

using only part occurrence priors. Combining the acoustic

model with the baseline sequential model provides in most

cases a improvement in the accuracy. However, the im-

provement cannot be obtained with all data, because typi-

cal loudness relations between different parts seem to de-

pend on the musical genre. Finally, the same search al-

gorithm as with the baseline method can be used for the

combined model with very small modifications.

5 As the entire data set forms one instance in the evaluation measure
calculation, no statistical measure could be calculated for proper compar-
ison.
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N=0 N=1 N=2 N=3 N=4 N=5 VMM

a 0.0 0.0 (0.0) 0.8 (0.0) 22.2 (34.9) 23.8 (31.7) 27.8 (27.0) 24.6 (29.4)

bridge 18.6 25.8 (17.9) 47.4 (38.6) 51.1 (45.4) 50.2 (47.4) 49.1 (43.9) 47.7 (41.4)

c 3.3 13.5 (3.6) 41.6 (38.3) 44.6 (42.1) 47.4 (47.7) 56.2 (54.8) 49.6 (48.5)

chorus 29.5 75.5 (67.9) 83.4 (76.3) 85.0 (80.6) 82.7 (76.6) 79.8 (75.3) 82.4 (77.9)

chorus_a 11.9 0.0 (0.0) 0.0 (0.0) 8.2 (7.5) 15.7 (15.7) 15.7 (11.2) 0.0 (3.0)

chorus_b 4.4 0.0 (0.0) 0.9 (0.9) 8.8 (5.3) 12.4 (12.4) 12.4 (7.1) 0.9 (2.7)

intro 32.7 43.4 (22.7) 97.2 (97.6) 97.6 (98.2) 97.0 (97.8) 98.2 (97.8) 97.0 (96.8)

outro 52.4 47.4 (9.9) 98.3 (98.3) 98.6 (98.6) 98.3 (97.6) 95.9 (90.9) 98.1 (98.3)

pre-verse 30.1 10.0 (3.7) 51.4 (40.5) 55.6 (45.6) 50.7 (43.3) 46.8 (41.7) 52.5 (42.6)

solo 23.8 2.2 (0.0) 6.6 (4.4) 6.6 (7.2) 13.8 (15.5) 23.2 (18.8) 21.0 (16.0)

theme 5.5 0.0 (0.0) 2.7 (0.0) 2.7 (2.7) 2.7 (4.4) 6.6 (3.3) 3.3 (0.5)

verse 46.5 59.0 (38.4) 72.5 (62.6) 71.0 (64.6) 70.6 (64.5) 72.1 (64.7) 74.5 (65.4)

MISC 7.8 21.4 (11.7) 35.5 (29.2) 44.4 (38.6) 42.8 (37.9) 41.7 (40.6) 40.3 (37.3)

total 27.7 42.1 (29.6) 61.7 (55.6) 64.3 (60.2) 63.6 (59.9) 63.6 (59.3) 63.7 (59.2)

Table 1. Per-label accuracy (%) on TUTstructure07 obtained using only acoustic modelling (N=0 column), only sequence

modelling (values in parentheses), and combining sequence and acoustic modelling (other values).

N=0 N=1 N=2 N=3 N=4 N=5 VMM

bridge 6.2 22.0 (24.3) 48.0 (45.8) 77.4 (76.8) 75.1 (75.1) 70.1 (74.0) 69.5 (69.5)

intro 43.8 50.0 (41.4) 92.6 (92.0) 93.2 (92.6) 93.8 (93.8) 93.8 (93.8) 93.2 (93.2)

outro 73.2 60.6 (0.0) 99.3 (99.3) 99.3 (99.3) 98.6 (97.9) 97.9 (93.7) 99.3 (99.3)

refrain 20.1 30.1 (28.1) 43.8 (45.4) 61.8 (62.2) 69.1 (69.9) 65.1 (67.5) 69.1 (70.3)

verse 37.2 73.4 (70.6) 80.9 (81.5) 88.5 (87.9) 86.5 (85.3) 83.7 (84.5) 87.1 (87.5)

verses 23.2 0.0 (0.0) 8.9 (8.9) 51.8 (53.6) 37.5 (37.5) 44.6 (44.6) 42.9 (42.9)

versea 39.2 0.0 (0.0) 2.0 (2.0) 7.8 (7.8) 23.5 (19.6) 25.5 (19.6) 11.8 (11.8)

MISC 5.7 3.8 (4.5) 17.8 (17.2) 28.7 (29.3) 43.9 (37.6) 26.1 (25.5) 30.6 (29.9)

total 31.1 43.7 (36.1) 61.8 (61.8) 73.8 (73.7) 75.7 (74.6) 71.9 (72.4) 73.6 (73.9)

Table 2. Per-label accuracy (%) on UPF Beatles obtained using only acoustic modelling (N=0 column), only sequence

modelling (values in parentheses), and combining sequence and acoustic modelling (other values).

N=0 N=1 N=2 N=3 N=4 N=5 VMM

bridge a 20.1 20.1 (8.2) 72.3 (62.9) 73.6 (66.7) 64.8 (66.0) 59.7 (49.7) 71.7 (62.9)

chorus a 51.2 70.9 (45.6) 85.3 (76.2) 85.6 (77.6) 80.6 (73.5) 73.5 (71.5) 86.2 (79.7)

chorus b 28.0 37.5 (6.5) 79.2 (73.2) 79.8 (71.4) 72.6 (65.5) 72.0 (71.4 76.2 (72.0)

ending 80.6 84.7 (32.7) 100 (100) 99.0 (100) 98.0 (94.9) 99.0 (88.8) 100 (99.0)

intro 50.0 45.1 (10.8) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)

pre-chorus 7.6 7.6 (3.3) 64.1 (51.1) 60.9 (52.2) 63.0 (39.1) 48.9 (42.4) 63.0 (45.7)

verse a 35.0 48.1 (20.3) 85.7 (76.8) 84.4 (78.9) 81.4 (78.1) 77.6 (73.4) 81.0 (76.4)

verse b 19.4 30.3 (17.4) 85.6 (76.6) 84.1 (80.1) 79.6 (74.6) 73.6 (69.2) 82.1 (76.6)

verse c 41.9 14.0 (0.0) 60.5 (30.2) 55.8 (39.5) 47.7 (30.2) 32.6 (30.2) 47.7 (33.7)

MISC 29.8 52.4 (8.4) 84.9 (67.6) 80.4 (73.8) 77.8 (68.4) 69.8 (67.6) 83.1 (74.7)

total 36.0 45.5 (19.1) 82.8 (72.8) 81.7 (75.3) 77.5 (70.9) 71.8 (68.0) 80.7 (74.1)

Table 3. Per-label accuracy (%) on RWC pop obtained using only acoustic modelling (N=0 column), only sequence

modelling (values in parentheses), and combining sequence and acoustic modelling (other values).
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