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ABSTRACT

The development of novel analytical tools to investigate
the structure of music works is central in current music
information retrieval research. In particular, music sum-
marization aims at finding the most representative parts of
a music piece (motifs) that can be exploited for an effi-
cient music database indexing system. Here we present a
novel approach for motif discovery in music pieces based
on an eigenvector method. Scores are segmented into a
network of bars and then ranked depending on their cen-
trality. Bars with higher centrality are more likely to be
relevant for music summarization. Results on the corpus of
J.S.Bach’s 2-part Inventions demonstrate the effectiveness
of the method and suggest that different musical metrics
might be more suitable than others for different applica-
tions.

1. INTRODUCTION

Listening to music and perceiving its structure is a rela-
tively easy task for humans, even for listeners without for-
mal musical training. However, building computational
models to simulate this process is a hard problem. On the
other hand, the problem of automatically identifying rele-
vant characteristic motifs and efficiently store and retrieve
the digital content has become an important issue as digital
collections are increasing in number and size more or less
everywhere.

Notwithstanding the conspicuousness of the literature,
current approaches seem to rely just on the repetition para-
digm [20] [8], assigning higher scores to recurring equiv-
alent melodic and harmonic patterns [11]. Recently re-
ported approaches to melodic clustering based on string
compression [10], motivic topologies [18], graph distance
[21] and paradigmatic analysis [19] have been used to se-
lect relevant subsequences among highly repeated ones by
heuristic criteria [15] [1]. However, this approach is not
completely satisfying as the repetition paradigm can pro-
vide just a first approximation of the perceptual ranking
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mechanism [3] and produces too many false positives shar-
ing the same repetition rates.

Moreover, the repetition paradigm, in order to be ap-
plied, needs by no means a precise definition of “varied
repetition”, a concept not easy to define. Of course, it has
to include standard music transformation, but it is very dif-
ficult to adopt a simple two-valued logic (this is a repeti-
tion and this is not) in this context, where a more fuzzy
approach seems to better address such a problem.

Sometime repetitions may even lead to evident mistakes,
as it might happen that highly repeated patterns turn to be
totally irrelevant from a musicological point of view. In
fact cases occur where the most repeated pattern in the
whole composition is an ornament, like a trill. This is to
show that the repetition paradigm is not sufficient in itself
to identify relevant themes but it needs some heuristics to
select among relevant and irrelevant patterns.

Here we present an alternative ranking method based on
connections instead of repetitions. We show that a distance
distribution on a graph of note subsequences induced by
music similarity measures generates a ranking real eigen-
vector whose components reflect the actual relevance of
motives. False positives of the repetition paradigm turned
out to be less connected nodes of the graph due to their
higher degree of dissimilarity with relevant motives.

Our results show how higher indexes of connection, or
“centrality”, are more likely to perform better than higher
repetition rates in motif discovery, with no additional as-
sumptions on the particular nature of the sequence or the
adopted similarity measure.

2. RELATED WORKS

Music segmentation is usually realized through musicolog-
ical analysis by human experts and, at the moment, auto-
matic segmentation is a difficult task without human inter-
vention. The supposed music themes have often to undergo
a hand-made musicological evaluation, aimed at recogniz-
ing their expected relevance and completeness of results.
As a matter of fact, an automatic process could extract a
musical theme which is too long, or too short, or simply
irrelevant. Thats why a human feedback is still required in
order to obtain high-quality results.
We present here an overview of current approaches based

on different musical assumptions. We start this section
with a general overview of the literature. Then we intro-
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duce harmony related approaches, with a focus to reduc-
tionistic ones. Finally we introduce topology-based mod-
els, which share much more similarities than others with
our approach. All those methods makes use of the repeti-
tion paradigm.

2.1 General approaches

Lartillot [15] [16] defined a musical pattern discovery sys-
tem motivated by human listening strategies. Pitch inter-
vals are used together with duration ratios to recognize
identical or similar note pairs, which in turn are combined
to construct similar patterns. Pattern selection is guided
by paradigmatic aspects and overlaps of segments are al-
lowed.

Cambouropoulos [6], on the other hand, proposed meth-
ods to divide given musical pieces into mostly non-over-
lapping segments. A prominence value is calculated for
each melody based on the number of exact occurrences of
non-overlapping melodies. Prominence values of melodies
are used to determine the boundaries of the segments [7].
He also developed methods to recognize variations of fill-
ing and thinning (through note insertion and deletion) into
the original melody. Cambouropoulos and Widmer [9] pro-
posed methods to construct melodic clusters depending on
the melodic and rhythmic features of the given segments.
Basically, similarities of these features up to a particular
threshold are used to determine the clusters. High com-
putational costs of this method make applications to long
pieces difficult.

2.2 Tonal harmony-based approaches

Tonal harmony based approaches exploit particular har-
monic patterns (such as tonic-subdominant-dominant-tonic),
melodic movements (e.g. sensible-tonic), and some rhyth-
mical punctuation features (pauses, long-duration notes,
...) for a definition of a commonly accepted semantic in
many ages and cultures.

These approaches typically lead towards score reduc-
tions (see Figure 1), made possible by taking advantage of
additional musicological information related to the piece
and assigning different level of relevance to the notes of
a melody. For example one may choose to assign higher
importance to the stressed notes inside a bar [22]. In other
words, the goal of comparing two melodic sequences is
achieved by reducing musical information into some “prim-
itive types” and comparing the reduced fragments by means
of suitable metrics.
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Figure 1. J.S. Bach, BWV 1080: Score reductions.
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A very interesting reductionistic approach to music anal-
ysis has been attempted by Fred Lerdahl and Ray Jack-
endoff. Lerdahl and Jakendoff [17] research was oriented
towards a formal description of the musical intuitions of
a listener who is experienced in a musical idiom. Their
purpose was the development of a formal grammar which
could be used to analyze any tonal composition.

The study of these mechanisms allows the construction
of a grammar able to describe the fundamental rules fol-
lowed by human mind in the recognition of the underlying
structures of a musical piece.

2.3 Topological approaches

Mazzola and Buteau [5] proposed a general theoretical frame-
work for the paradigmatic analysis of the melodic struc-
tures. The main idea is that a paradigmatic approach can
be turned into a topological approach. They consider not
only consecutive tone sequences, but allow any subset of
the ambient melody to carry a melodic shape (such as rigid
shape, diastematic shape, etc.). The mathematical con-
struction is very complex and, as for the motif selection
process, it relies on the repetition paradigm.

The method proposed by Adiloglu, Noll and Obermayer
in [1] does not take into account the harmonic structure of
a piece and is based just on similarities of melodies and on
the concept of similarity neighborhood. Melodies are con-
sidered as pure pitch sequences, excluding rests and rhyth-
mical information.

A monophonic piece is considered to be a single melody
M, i.e. they reduce the piece to its melodic surface. Sim-
ilarly, a polyphonic piece is considered to be the list M =
(M;);=1,... n of its voices M;. The next step is to model a
number of different melodic transformations, such as trans-
positions, inversions and retrogradations and to provide
an effective similarity measure based on cross-correlation
between melodic fragments that takes into account these
transformations. They utilize a mathematical distance mea-
sure to recognize melodic similarity and the equivalence
classes that makes use of the concept of neighbourhood to
define a set of similar melodies.

Following the repetition paradigm stated by Cambouro-
poulos in [7] they define a prominence value to each melody
based on the number of occurrences, and on the length of
the melody. The only difference is that they allow also
melody overlapping. In the end, the significance of a melody
m of length n within a given piece M is the normalized
cardinality of the similarity neighbourhood set of the given
melody. If two melodies appear equal number of times, the
longer melody is more significant than the shorter one.

In [1] the complete collection of the Two-part Inven-
tions by J. S. Bach is used to evaluate the method, and this
will be also our choice in section 4.

3. THE RELATIONAL MODEL

As stated in Section 2, current methods rely on the repeti-
tion paradigm. Our point of view can be synthesized in the
following points:
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1. We consider a music piece as a network graph of
segments,

2. we do take into account both melodic and rhythmical
structures of segments

3. we do not consider harmony, as it is too much related
to tonality.
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Figure 2. A representation of the (first-order) network of
frames.

A single frame may represent, for instance, a bar or a
specific voice within a bar like in Fig. 2, but also more
general segments of the piece. We do not take into account
here the problem of windowing as the method is basically
independent from any specific segmentation of the piece.
What we provide here is a different point of view which,
like the repetition paradigm, can be applied in principle to
any specific segmentation.

3.1 Score representation

The natural consequence is that a music piece can be looked
at like a complete graph K,,. In graph theory, a complete
graph is a simple graph where an edge connects every pair
of distinct vertices. The complete graph on n vertices has
n(n — 1)/2 edges and is a regular graph of degree n — 1.

In this representation, score segments correspond to graph
nodes and the similarity between couples of segments cor-
respond to edge weights. This approach can be better ex-
plained if we think to a score like a network graph of “pages”,
so we can establish a parallelism between score segments
ranking and the World Wide Web ranking process as orig-
inally depicted in [4] by S. Brin and L. Page.

As stated before, the problem of windowing is partly
overcome in the network concept as it does not strongly
affect the model. In fact by using undersized windows we
normally get just more detailed results. In our experiments
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(see Section 4) we decided to adopt a one-bar length win-
dow, as we considered metric information relevant to mu-
sic segmentation, avoiding any form of overlapping. In fact
it turned out that if the metric information is taken into ac-
count, overlapping windows are not relevant in a relational
model, as they can lead to inaccurate motif discovery, due
to overrates given to highly self-similar segments.

3.2 Metric weights

As stated above, graph nodes correspond to score segments.
The next issue is the definition of a suitable concept of dis-
tance between segments. This should be apparently at the
very heart of the method, and in a sense it is. Every time
there is a similarity concept the question is: which kind of
similarity? There are so many different concepts of music
similarity (perceptual, structural, melodic, rhythmical, and
so on) that is not possible to provide a unique definition.

The variety of segmentations reflects to a large extent
the variety of musical similarity concepts, and that is the
reason why it is correct to have this parameter here. Nev-
ertheless, as stated in Section 4 the model is rather robust
respect to metric changes.

In general, we can just say that the set of segments can
be endowed with a notion of distance

d:SxS—R

between pairs of segments and turns this set into a (possi-
bly metric) space (S, d). A natural choice for point sets of
a metric space is the Hausdorff metric [13] but any other
distance discovered to be useful in music perception, like
EMD/PTD [23], can be chosen as well.

Here we assume d to be:

1. real,

2. non-negative,

3. symmetric and

4. such thatd(s,s) =0,Vs € S

As a matter of fact, most musically relevant perceptual
distances do not satisfy all metric axioms [23]. Therefore
no further property, like the identity of indiscernibles or the
triangle inequality, is assumed.

Given two segments s; and so, for the experiments we
adopted the two following simple metrics:

di(s1,82) = [ [[s1]12 — [s2]12] )]
|s]

do(s1,80) = [ (5] — s3)? 2

Is]

where s’ is the derivative operator on the sequence s, |s| is
the length of s and [s];2 is the sequence s where each entry
has been chosen in the interval [0, 11].

d; is a first-order metric that takes into account just oc-
tave transpositions of melodies. In fact, pitch classes out
of the range [0, 11] are folded back into the same interval,
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so melodies which differ for one or more octaves belong
to the same congruence class modulo 12 semitones. ds
is a second-order metric that takes into account arbitrary
transpositions and inversions of a melody. No other as-
sumptions on possible variations have been made, so that
an equivalence class of melodies is composed just of trans-
positions and inversions of the same melody like in [1].

Both distances can be applied to single voice sequences
but also to multiple voice sequences, given that a suitable
representation has been provided. For instance, in a two
voice piece, with voices v; and vy, one can consider the
difference vector v = wv; — vy as a good representation
of a specific segment, and then apply d; or ds to this new
object. The advantage of using this differential represen-
tation is that it is invariant respect to transpositions and
inversions of the two voices so that, for instance, it makes
also d; invariant respect to transpositions and inversions,
and not just to octave shifts.

By exploiting those distance concepts, it is possible to
endow the edges of the complete graph with metric weights
in order to compute the weights of nodes in terms of the
main eigenvector, as we are going to show in the following
Sections.

3.3 Matrix representation and ranking eigenvector

The adopted algebraic representation of the ‘score graph’
K is the adjacency matrix A(K). This is a nonnegative
matrix as its entries are the distance values between the dif-
ferent segments in which the score has been divided into.
Perron-Frobenius theory for nonnegative matrices grants
that, if A € M, «, and A > 0, then there is an eigenvec-
tor z € R™ with > 0 and and Z?zl x; = 1, called the
Perron vector of A [14].

This result has a natural interpretation in the theory of fi-
nite Markov chains, where it is the matrix-theoretic equiv-
alent of the convergence of a finite Markov chain, formu-
lated in terms of the transition matrix of the chain [2].

The Perron vector can be viewed as a probability dis-
tribution of presence of a ‘random listener’ on a particular
segment of a musical piece. This listener recalls with prob-
ability d(s;, sj) segment s; from segment s;, following the
‘links’ represented by the values of the similarity function.

3.4 The algorithm

Letd : S x S — R denote a distance function on S, like
those defined in Section 3.2, which assigns each pair of
segments s; and s; a distance d(s;, s;). We can describe
the algorithm through the following steps:

1. Form the distance matrix A = [a; ;] such that a; ; =
d(siv Sj );

2. Form the affinity matrix W = [w; ;| defined by

2
o i
w; ; = exp | — 952

where o is a parameter that can be chosen experi-
mentally. A possible choice is the standard devia-

3)
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Figure 3. Normalized eigenvector profile for bars in BWV
773. Higher values correspond to higher centrality (see
also Table 2). The metric space is (S, dy).

tion of the similarity values within the considered
network graph;

Compute the leading eigenvector z = [z;] of W and
rank each segment s; according to the component x;
of x.

4. EXPERIMENTAL RESULTS

In order to evaluate the relevance of the results of the pro-
posed method we need a suitable data collection together
with a commonly acceptable ground truth for that collec-
tion. Following [1], Johann Sebastian Bach’s Two-part In-
ventions has been our choice. For this collection, a com-
plete ground truth is provided by musicological analysis
and it can be found for example in [12] and [24].

The first choice we had to make was the segment size.
Many experiments has been conducted but, as stated be-
fore, it turned out that reductions of the segment size (for
example from two bars to one bar) did not sensibly affect
the results. So experiments have been performed with a
one-bar long window. Experiments have been performed
also to verify the suitability of an overlapping technique
but we did not observed any improvement in the results.

Second, we implemented the functional metrics described
in Section 3.3. By performing the experiments, we ob-
served a few variations in the first two ranked levels, and
this means that top ranked bars tend to be more “stable” re-
spect to metric changes. Thus we can say that the method
is rather robust, as far as these metrics are concerned. In
the synthesis reported in Table 2 we considered just the top
ranked segments, i.e. corresponding to the two (different)
highest values of x components.

When compared to musicological analysis [1] [12] [24]
it is evident that the centrality-based model outperforms
the repetition-based model, providing also more significa-
tive information. Segments with higher rank in the rela-
tional model represent always relevant bars of the score,
even if they may be different by using different metrics.
This means that relevant bars contain a main motif or char-
acterizing sequences. It is not the same for the model based



11th International Society for Music Information Retrieval Conference (ISMIR 2010)

“3 ©3 4

5L 18 775 1

0r I 26 4
24
°3

5
158 45 i

22

_25 I I I I I I I I I

-40 -30 -20 -10 0 10 20 30 40 50 60

Figure 4. 2D projection of the metric space (S,d;) for
BWYV 773. Bars with higher centrality values (darker la-
bels) tend to occupy the central region of the graph.

Model Precision (%)
Repetition 43
dy 77
ds 95

Table 1. Precision results for the three models applied to
J. S. Bach’s Inventions.

on repetitions: here the relevancy really depends just on the
number of repetitions, so it can happen that a trill turns to
be more relevant than the rest of the piece just because its
repetition rate is higher than that of the other bars.

Bar ranking is in principle not affected by the repeti-
tion rate of patterns and higher importance is equally given
to higher and lower repetition rates. Of course, superpo-
sitions of the two methods may happen too. On the other
hand, cases exist for which no repetition occurs and, conse-
quently, the repetition paradigm is not applicable in princi-
ple, unless defining ad hoc neighborhood concepts for each
piece. In these cases, motif centrality can provide signifi-
cant results.

In Figure 3 the components of the main eigenvector for
BWYV 773, representing the degree of centrality of each
bar, have been plotted against bar numbers. This provides
an immediate representation of the “importance” of each
bar within the whole piece. Bars with higher values are
more likely to contain a main motif of the piece. In partic-
ular, for BWV 773, bars 1 and 2 actually contain the main
motif.

Figure 4 shows a two-dimensional projection of the 26-
dimensional metric space for BWV 773 obtained through a
dimensionality reduction algorithm. From this picture it is
evident how the top ranked results (1, 2) occupy the central
region of the graph and have darker labels, as the darkness
is directly proportional to the correspondent component of
the main eigenvector, and thus to the centrality, in the sense
of graph theory, of the correspondent segment.
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Table 1 presents a synthesis of the results shown in Ta-
ble 2 in terms of the precision of the three methods. As for
the computational complexity, suitable linear eigensolvers
are available, and they can be easily applied, especially in
case of very long pieces.

5. CONCLUSIONS

We presented a new approach for motif discovery in music
pieces based on an eigenvector method. Scores are seg-
mented into a network of bars and then ranked depending
on their graph centrality. Bars with higher centrality are
more likely to be musically relevant and can be exploited
for music summarization. Experiments performed on the
collection of J.S.Bach’s 2-parts Inventions show the effec-
tiveness of our method.

Besides music information retrieval, we expect this ap-
proach to find applications in music theory, perception and
visualization. For instance, one could investigate how par-
ticular mathematical entities (e.g. spectra) relate to partic-
ular musical issues (e.g. genre, authorship).

Second, one could investigate how different metrics d
relate to different concepts of melodic and harmonic simi-
larity; in this context, the inverse problem of finding met-
rics d induced by a priori eigenvectors (coming from a
hand-made musicological analysis) could provide interest-
ing insights into music similarity perception.

Third, it is also possible to compare different music
pieces from a structural point of view by comparing their
associated eigenvectors.

Finally, the method could be extended to the audio do-
main, for instance to organize large audio collections, where
heuristic methods can be hardly applied and it is usually
difficult or even impossible to separate different voices and/
or musical instruments.
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