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ABSTRACT

This paper proposes a new method for local key and chord
estimation from audio signals. A harmonic content of the
musical piece is first extracted by computing a set of chroma
vectors. Correlation with fixed chord and key templates
then selects a set of key/chord pairs for every frame. A
weighted acyclic harmonic graph is then built with these
pairs as vertices, and the use of a musical distance to weigh
its edges. Finally, the output sequences of chords and keys
are obtained by finding the best path in the graph.

The proposed system allows a mutual and beneficial
chord and key estimation. It is evaluated on a corpus com-
posed of Beatles songs for both the local key estimation
and chord recognition tasks. Results show that it performs
better than state-of-the art chord analysis algorithms while
providing a more complete harmonic analysis.

1. INTRODUCTION

Harmony, like rhythm, melody or timbre, is a central as-
pect of Western music. This paper focuses on chord se-
quences and key changes, which are strong components of
the harmony. Audio chord transcription has been a very
active field for the past recent years. In particular, the in-
creasing popularity of Music Information Retrieval (MIR)
with applications using mid-level tonal features, has estab-
lished chord transcription as useful and challenging task.
Among the numerous chord recognition methods, we can
distinguish four main types of systems. The first ones can
be referred as template-based methods [6, 9, 14], since a
central information they need to perform the transcription
is the definition of the chords they want to detect. Working
just like pattern recognition methods, they choose for ev-
ery frame the chord whose template fits the best the data.
The temporal structure of the song is often captured thanks
to post-processing methods working either on the sequence
of detected chords or on the calculated fitness features.
Other methods rely on musical information (such as rhythm
or musical structure) in order to capture a harmonically
relevant chord transcription. These music-based methods
[2, 12], implicitly or explicitly exploit information from
music theory in the construction of their systems. In partic-
ular, the transitions between chords or the rhythmic struc-
ture are often modeled with parameters reflecting musical
knowledge, by estimating the likelihood of a given chord
being followed by a different chord, for example. Some
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data-driven methods [10, 17], use completely or partially
annotated data in order to build a system which fits the
audio data. In these methods, all the parameters are eval-
uated with training. Finally, some systems merge music-
and data-based approaches in order to build hybrid meth-
ods [15, 16], which combine the use of training data and
music theory knowledge.

All these methods have the opportunity to compare to
each other in the MIREX [4], which is an annual community-
based framework for the evaluation of MIR systems and
algorithms. In 2009, the results for the audio chord detec-
tion were pretty close and the different methods seemed
to compete at the same level of accuracy. The aim of this
to work is to offer a chord estimation with a comparable
level of accuracy, and estimating a sequence of local keys
as well as chords.

Fewer works were achieved to estimate musical keys
from audio, and the vast majority of them only consider
the main key (or global key) of a piece of music [8, 13].
In these works, because only the main key is handled, key
changes are ignored (songs having different local keys are
either ignored or considered to be in the first local key en-
countered). Chai [3] presented one of the few studies on
key change from audio. In this work, local key tracking
was performed by a HMM-based approach, and evaluated
on ten classical piano pieces.

The main contribution of this paper relies in the fact that
both chord and key can benefit from each other’s estima-
tion, as chords bring out information about local key and
vice versa. We present a new system estimating simulta-
neously both chord and key sequences from audio. The
proposed method is both template-based and music-based
and no training is required.

We begin to present our work by describing the system
used for both key and chord estimation in Section 2. Sec-
tion 3 presents the experiments performed to evaluate the
accuracy of the proposed method. Conclusion and future
work follow in Section 4.

2. SYSTEM DESCRIPTION

In this section, we provide the description of the proposed
method, which is adapted for audio from the proposed sys-
tem in [anonymous self-reference]. The overall process is
illustrated in Figure 1. The system works in four major
steps: (1) chroma vectors are computed from audio sig-
nal; (2) a set of harmonic candidates are selected for each
frame (Figure 1(a)); (3) a weighted acyclic graph of har-
monic candidates is built (Figure 1(b)), (4) the dynamic
process takes place (Figure 1(c)) and the final sequence
of chords/keys corresponding to the best path is outputted
(Figure 1(d)).
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An additional step consists in post-filtering the outputted
sequence, to correct some analysis errors remaining.

2.1 Chroma Computation

The input audio file of the analysis system proposed is rep-
resented as sequences of chromas. This mid-level feature
captures the tonal information since it represents the short-
time energy related to each pitch class independently of
octave [5]. Indeed, information about octave is not neces-
sary for chord and key analysis purposes.

2.1.1 Tuning Issues

The chromas are computed on each frame. One of the main
problem when analyzing audio musical piece is the varia-
tion in tuning. All the instruments are not always tuned to
the same value, and this value often varies in time. Two
options are possible. The tuning value may be analyzed,
but tuning analysis assumes a stationarity. We choose to
avoid this analysis by computing chroma on 36 bins and by
shifting chroma at each frame according to possible tuning
variations. This way, two chords played with different tun-
ing result in two different 36 bin chromas, but results in
almost the same 12 bin chroma [5].

2.1.2 Multi-Scale Approach

Instead of relying exclusively on one chromagram (sequence
of chroma vectors over time), the proposed method in-
cludes a set of chromagrams. Each one has its own param-
eters but all share a common multiple hop size, to combine
information at the same times during the piece of music.
These chromagrams bring out different kinds of informa-
tion, and may be subject to different treatments. Longer
chromas may bring out information for key analysis, and
different set of sizes for shorter chromas may fit different
tempos and carry out different information useful for chord
identification.

2.1.3 Filter

In order to reduce the influence of the noise, transients or
sharp edges, we filter the chromagram on several frames [2,
6]. The filtering method used here is the median filtering,
which has been widely used in image processing in order
to correct random errors.

2.2 Selection of Harmonic Candidates

An harmonic candidate is a pair (Ci,Ki), where Ci (resp.
Ki) represents a potential chord (resp. local key) for the
ith frame of audio signal. Ci is then considered as a chord
candidate (among possible others), and Ki as a key candi-
date. This section presents the processes allowing to select
one or several chord/key pairs as harmonic candidate(s),
and discard others.

2.2.1 Chord

The chords studied here are major and minor triads (12
major and 12 minors). Lots of works [6, 9, 14] have used
chord templates to determine the likelihood of each of the
24 chords according to a chroma vector. With 12 dimen-
sional vectors, major/minor triadic chord profile may be
defined like the following:

Major-triad = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)

Minor-triad = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
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Figure 1. (a) Enumeration of harmonic candidates Ci,j

for consecutive audio frames Fi. Ci,j represents the jth
harmonic candidate for frame Fi. Time appears from left
to right. (b) Creation of the edges of a weighted acyclic
graph. An edge is built from each of the first frame’s can-
didates to each of the second frame. (c) Dynamic process
selects an unique path to each candidate of a given frame
(here, frame n). (d) Selection of final path. The final
chord/key sequences is then outputted from the sequence
of chosen harmonic candidates.
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All the major (resp. minor) chord templates can be ob-
tained by rotation of the major (resp. minor) profile.

For each of the 24 chord templates, we compute a cor-
relation score by scalar product. The following details the
correlation C between a chord template T and a 12 dimen-
sional chroma vector V .

CT,V =
12∑

i=1

(T [i].V [i])

The higher the correlation is, the more likely the chord
corresponding to the template is played in the considered
frame. A direct way to get chord candidates is thus by
selecting the chords whose templates get the higher corre-
lation score with the chroma of a given audio frame. In the
multi-scale approach as exposed in Section 2.1.2, it is pos-
sible to consider different highest correlated chords from
different windowed chromas as candidate for the same frame.
The different chord candidates may thus be carrying differ-
ent kind of information.

2.2.2 Key

Key selection is carried out with the same approach as for
chords, but with larger time frame as keys have a larger
time persistence than chords. The key profiles used are
presented in [18]:

Major = (5, 2, 3.5, 2, 4.5, 4, 2, 4.5, 2, 3.5, 1.5, 4)

Minor = (5, 2, 3.5, 4.5, 2, 4, 2, 4.5, 3.5, 2, 1.5, 4)

As for chord candidate computation, the correlation of
each of the 24 keys (12 minors + 12 majors) are computed
using a scalar product between shifted key template and
chroma vectors.

2.2.3 Harmonic candidates

The harmonic candidates finally enumerated are all the pos-
sible combination of previously selected keys and chords.
If n chords and m keys are selected for a given audio
frame, n x m pairs are enumerated. For example, with CM

and Am as selected chords and CM and GM as compat-
ible keys, the harmonic candidates enumerated would be
(CM , CM ), (CM , GM ), (Am, CM ) and (Am, GM ). A dif-
ferent choice can be made, by considering a compatibility
between chords and keys. But an incorrect chord selected
may discard the correct key (and vice versa), because the
two are not compatible. For this reason, adding a compat-
ibility between chords and keys has led to a decrease of
accuracy.

2.3 Weighted Acyclic Harmonic Graph

Once the harmonic candidates are enumerated for two con-
secutive frames, an edge is built from each of the first
frame’s candidates to each of the second frame. This edge
is weighted by a transition cost between the two chord can-
didates. This transition cost must take into account both
the different selected chords, and the different selected lo-
cal keys.

We thus choose to use Lerdahl’s distance [11] as transi-
tion cost. If (Cx,Kx) represents the chord Cx in the key
Kx, Lerdahl defines the transition cost from x = (Cx,Kx)
to y = (Cy,Ky) as follows:

δ(x → y) = i + j + k

where i is the distance between Kx and Ky in the circle
of fifths, j is the distance between Cx and Cy in the circle
of fifths and k is the number of non-common pitch classes
in the basic space of y compared to those in the basic space
of x (see [11] for more details).

The distance thus provides an integer cost from 0 to
13, and is adequate for a transition cost in the proposed
method, since both compatible chords and keys are in-
volved in the cost computation. Nevertheless, this distance
offers a small range of possible values. As we need to
compare different paths between harmonic candidates, this
small range induces a lot of equality scenarios. The Ler-
dahl’s distance is thus slightly modified and the cost be-
tween two consecutive candidate is set to iα + jβ + k,
with i, j and k defined in Section 2.3. We choose α > 1
to discourage immediate transitions between distant keys,
and encourage progressive key changes, since modulations
often involve two keys close to each other in the circle of
fifths. For the same reason with chords, we also choose
β > 1. After experiment, α and β have been set to 1.1 and
1.01.

2.4 Finding the Best Path

Once the graph between all the harmonic candidates is
formed, the best path has to be found. This task is achieved
by dynamic programming [1]. In the graph, from left to
right, only one edge to each harmonic candidate is pre-
served. Several ways to select this edge can be considered.
We choose to preserve the edge minimizing the total sum
of weights along the path leading to each candidate, as il-
lustrated in Figure 1(c). The number of final paths is the
number of harmonic candidates for the last frame. The fi-
nal selected path is the path minimizing its total cost along
its edges. This path is outputted by the program.

2.5 Post-smoothing computation

Among the selected sequence of chord/key, some errors
may still be corrected by applying a post-smoothing treat-
ment. For example, if an instrument (or a singer) plays a
flattened third (Eb) as a blue note, it may induce a mode
error on the selected chord (making Cm as a chord can-
didate and discarding CM for the considered frame). The
outputted chord sequence may thus present several con-
secutive frames analyzed as CM are followed by a single
frame analyzed as Cm, and then by another several CM . A
simple post treatment on the outputted sequence of chords
may resolve this kind of errors.

3. EXPERIMENTS

This section presents the database used for experiments,
the evaluation procedure, and the influence on the different
parameters on the system accuracy. Once the best settings
determined, we compare the system to a state-of-the-art
method for chord estimation, and a direct template-based
method for key estimation.

3.1 Database

As both local key and chord ground truth were needed,
we choose to evaluate the proposed system on the Beat-
les audio discography (174 songs) with a 44100 Hz sam-
pling rate. In this database, the average number of chord
changes by song is 69, with an average of 7.7 different
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chords by song. The average number of different local
keys by song is 1.69. Chords transcriptions were checked
by Christopher Harte and the MIR community, and keys
annotations were provided by the Centre for Digital Mu-
sic (C4DM). Both sets of transcriptions are available at
http://www.isophonics.net.

3.2 Evaluation

In the transcriptions, chords have a root note and a type
which belongs to a vast dictionary [7]. In this paper, we
only focus on the root note (C, C#, D, ..., B) and the mode
(maj/min) of chords. All the ground truth chords of the
database have thus been mapped to min/maj triads. When
the chord has no third and cannot be mapped to a min/maj
triad, only the root note is considered and later compared
to the corresponding estimated root note. Silences and no-
chords (part of a song when no chord is defined) are ig-
nored, as the chord/no-chord detection issue has not yet
been addressed in the proposed system. The other compo-
nents of the evaluation are the same as for the evaluation
led in the 2009 MIREX audio chord detection task 1 . The
audio signal is divided in frames of approximately 100 ms
(4096 audio samples). The estimated chord is compared
for each frame to the ground truth at the time correspond-
ing to the center of the frame. The final score for a song is
the number of frames where estimated chord matches the
ground truth divided by the number of frames analyzed.
For the local key evaluation, the procedure is identical. For
each frame, the estimated key is compared to the ground
truth key at the center of the frame.

3.3 Chord Estimation

Following the multi-scale approach presented in 2.1.2, we
need to use different size of chromas vectors for chord es-
timation. The parameters for the different chroma scales
are the following:

• ”long” chromas: 32768 samples as window length
(approximately 0.8 sec) and 8192 (approximately 0.2
sec) as hop size,

• ”medium” chromas: 8192 samples as window length
(approximately 0.2 sec) and 8192 (approximately 0.2
sec) as hop size,

• ”short” chromas: 4096 samples as window length
(approximately 0.1 sec) and 4096 (approximately 0.1
sec) as hop size.

3.3.1 Influence of Filtering

A first experiment has been carried out on long chromas
to measure the influence of chroma filtering on chord es-
timation. For each frame, we set as chord candidate the
n highest correlated chords with the maj/min chord tem-
plates . Tests go from n = 1 to n = 4. For each value
of n, we compute the ratio of correctness as the number of
frames for which the correct chord is among the selected
candidates over the total number of frames. This ratio rep-
resents the system theoretical maximum accuracy, and is
reached if every correct chord candidate is present in the
final chord sequence outputted. Obviously, the higher the
number of considered chord candidates is, the higher the
chance is for one of them to be the correct chord, and thus
the higher the ratio of correctness is. In the other hand,

1 http://www.music-ir.org/mirex/2009/index.php/
Audio Chord Detection Results

No filtering
Nb. of chord candidates 1 2 3 4

Ratio of correct. (%) 58.3 71.5 78.6 82.9
System (%) 58.3 64.9 64.1 62.2

Filtering
Nb. of chord candidates 1 2 3 4

Ratio of correct. (%) 68.4 79.1 85.5 88.9
System (%) 68.4 70.0 64.3 59.3

Table 1. Percentage of correct chord in harmonic candi-
dates and system output accuracy depending on the num-
ber of candidates and chroma filtering. Best results are
achieved by limiting the number of candidates and filter-
ing chromas.

more chord candidates considered increase the likelihood
of the system to pick a incorrect chord. Finding the bal-
ance between these two parameters is thus a real need. Ta-
ble 1 presents the ratio of correctness and the system score
with or without chroma filtering and for different values
of n (number of chord candidates). Best chroma filtering
setting is achieved by taking into account a window of 9
chromas, centered on the considered chroma.

These first results shows that filtering leads to an im-
provement of the ratio of correctness, from 6% with four
selected candidates (82.9% to 88.9%) to more than 10%
with one (58.3% to 68.4%). Filtering thus seems to correct
some errors due to chroma vectors, by taking into account
information from adjacent frames.

3.3.2 Influence of the Number of Chord Candidates

In Table 1, we notice the drop of the system’s performance
when the number of selected candidates per frame exceeds
two. This can be explained by the close relationship ex-
isting among the highest correlated chord candidate of a
given chroma vector. Indeed, chord templates of two major
and minor chords sharing the same root note often induce
a close correlation score for a given chroma. The same
goes for any couple of chords close to each other in terms
of Lerdahl’s distance. In 80% of the frames, top 2 corre-
lated chord candidate have a distance less or equal to 1 on
the circle of fifths. Considering different candidates from
the same chroma thus does not seem profitable to gain a
maximum system accuracy.

3.3.3 Influence of the Multi-Scale Approach

Since a drop of accuracy is noticed when too many candi-
dates from the same chroma are selected as candidates, we
propose a new approach by considering top correlated can-
didates from different sized chromas. Table 2 presents the
ratio of correctness as well as the system score depending
on the combination of chroma size, and filtering. The gen-
eral idea is to add highest correlated chord candidates from
shorter chromas to the highest chord candidate of a given
long chroma. Tri-candidate means the combination of the
two best candidates from the two adjacent short chromas
centered in a long chroma with the best candidate from
the long chroma. Bi-candidate means the combination of
the best candidate from the medium chroma centered in a
long chroma with the best candidate from the long chroma.
Since top correlated chords of two different sized chroma
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Tri-candidate (1 long and 2 short chromas)
Filtering none long short both

Ratio of correct. (%) 69.8 78.2 76.6 79.1
Distinct chords (av.) 1.86 1.95 1.43 1.36

System (%) 64.5 72.2 71.8 73.7

Bi-candidate (1 long and 1 medium chromas)
Filtering none long medium both

Ratio of correct. (%) 65.1 75.1 73.5 76.7
Distinct chords (av.) 1.38 1.46 1.29 1.23

System (%) 62.8 71.6 70.7 72.8

Table 2. Percentage of correct chord in harmonic candi-
dates and system score depending on the selection of can-
didates from different sized chromagrams. Each time, the
average number of distinct chord candidates is mentioned.
Best results are reached by filtering both long and short
chromagrams, and by combining their information. Tri-
candidate means the two best candidates from the two ad-
jacent short chromas centered in a long chroma with the
best candidate from the long chroma. Bi-candidate means
the best candidates from the medium chroma centered in a
long chroma with the best candidate from the long chroma.

may be identical, we also show the average number of dis-
tinct chord candidates per frame. As for the previous ex-
periment, best filtering is achieved by taking into account
a windows of 9 chromas and centered on the considered
chroma, whatever its length.

Filtering effective in each case. If filtering is applied to
only one scale, the system accuracy and ratio of correct-
ness both benefit a little more of the long chroma filtering
than the short (resp. medium) for the tri-candidate (resp.
bi-candidate). Nevertheless, the best overall filtering effi-
ciency is reached by combining the filter on both chromas
size. Compared to no filter, the double sized-filter leads
to an increase of around 10% for the ratio of correctness
and the system accuracy, both in the tri-candidate and the
bi-candidate cases. The difference between the ratio of cor-
rectness and the system score is less important by consider-
ing candidates from different chromas than by considering
several candidates from the same chroma. With filtering,
this difference is of 5.4% (79.1 - 73.7) for the tri-candidate
configuration and of 2.9% (76.7 - 72.8) for the bi-candidate
(see Table 2), when it is more than 9% (79.1 - 70) with 2
candidates from the same long chromas (see Table 1). A
first way to explain this improvement is by considering the
decrease of average number of distinct chord candidates,
which is always lesser than 2 in both tri-candidate and bi-
candidate configuration. This decrease means fewer chord
candidates to consider for the system, thus decreasing the
likelihood to select an incorrect chord.

Maximum accuracy is reached with tri-candidate con-
figuration, with a system accuracy of 73.7%.

3.3.4 Post-Smoothing Treatment

We decide to apply a post-smoothing treatment to the out-
put of the system with the best settings, which performs
a 73.7% accuracy (see Table 2). The post-smoothing filter
looks for output chord sequence in the form of ...AABAA...
(resp. ...AAABCAAA...) and corrects it in ...AAAAA...
(resp. ...AAAAAAAA...). By applying the post-smoothing

Method Root Root and Mode
OGF2 (%) 78.9 72.3

Proposed System (%) 77.9 74.9

Table 3. Comparison of the proposed method with the
OGF2 method, which scored 1st (resp 2nd) in the 2009
MIREX Audio Chord Detection ”root estimation” task
(resp. root and mode task).

treatment with the system best previous settings, chord de-
tection reaches a 74.9% accuracy.

3.3.5 Comparison to a state-of-the-art Method

We compare the best configuration of our system to one of
the best methods of the 2009 MIREX Audio Chord Esti-
mation task, evaluated on the same database with the same
evaluation procedure. The comparison is made with the
OGF2 method, proposed by Oudre et al. Results are shown
in Table 3. On the root estimation only, OGF2 is 1% more
accurate than the proposed method (78.9% compared to
77.9%). On the root and mode estimation, the proposed
system performs better than the OGF2 method and im-
proves by almost 3% the accuracy of the detected chords
(74.9% compared to 72.3%). This comparison shows that
the proposed method is comparable, and maybe even more
accurate than one of the best methods presented at the 2009
MIREX when it comes to chord estimation, and compares
the local key sequence as well as the chord sequence.

3.4 Local Key Estimation

Key estimation is performed on the same database than for
chord estimation. We compare the key sequence output
of the proposed system to a direct template-based method
(DTBM). The same settings are used for the two compared
methods, as we wish to evaluate the system’s contribution.
The window size is set to 30 sec approximately. For the
proposed method, the number of key candidates per frame
is set to 3. Results, shown in Table 4, detail the estimated
key error made by the two compared method, by presenting
relative and neighbor errors as well as correct key accuracy.
Relative keys share the same key signature (for example,
CM and Am are relative keys of each other). A neighbor
key differs from the original key by an accidental. Each
key has two neighbors (for instance, CM has FM and GM

as neighbors).
The system performs better than the DTBM method by

estimating more correct keys (62.4% compared to 57.6%).
Moreover, the number of errors due to non related key (dif-
ferent from neighbor or relative) is less important when the
analysis is performed by the system (17.3% compared to
21.9%).

3.5 Reciprocal Benefit of Simultaneous Estimation

We present here an evaluation to measure the reciprocal in-
fluence of the chord and key simultaneous estimation. We
compared the proposed system, which takes into account
harmonic candidates (i.e. pairs of chord AND key candi-
dates), to the same system with only chord OR key can-
didates. When only chord (resp.) are considered, the dis-
tance used to weigh edges in the harmonic graph is edited
to take only chord (resp. key) into account. Results are
shown in Table 5.
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Key estimation Correct Rel. Nei. Oth.
System (%) 62.4 2.9 17.4 17.3
DTBM (%) 57.6 1.6 18.9 21.9

Table 4. DTBM: Direct Template-Based Method. Keys
scores are shown in % and are split among possible errors:
correct keys, relative keys (Rel.), neighbor keys (Nei.) and
others (Oth.). The system performs the highest accuracy in
terms of correct key detected. The number of due to non
related keys is also less important with the system analysis
than with the DTBM.

Harmonic Chord Key Both
Candidate C • • K C K

System (%) 73.1 • • 57.8 74.9 62.4

Table 5. System accuracy considering (chord,key), only
chord and only key as harmonic candidates. The system
performs better in chord and key estimation when taking
into account both information simultaneously.

We note that both key and chord estimation are bet-
ter when the harmonic candidate is the (chord,key) pair.
Chord estimation accuracy drops of almost 2% (74.9 com-
pared to 73.1) and key estimation accuracy drops of almost
5% (62.4 compared to 57.8).

4. CONCLUSION AND FUTURE WORK

This paper presents a new method for chord and local key
estimation where the analysis of chord sequence and key
changes are performed simultaneously. A multi-scale ap-
proach for chroma vectors is proposed, and we show an
increase in accuracy when the chords are selected from dif-
ferent sized chromas. While the key estimation performs
better than a direct template-based method, the chord ac-
curacy shows better results than a state-of-the-art method.

Future work will involve analysis of different chord types,
silence and no-chord detection as well weighing the har-
monic graph of the proposed method in a probabilistic ap-
proach. Applications for MIR using both local key and
chord information are also studied. For example, harmonic
information may be helpful for estimating the musical struc-
ture of pieces since changes of local key generally occur
at the beginning of new patterns. Furthermore, we aim at
investigating the possible improvements induced by a re-
trieval system based on all the harmonic information, com-
pared to existing systems that only consider chord progres-
sions.
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